Tìm \(\overline{ab}\), biết:
\(\sqrt{\overline{ab}}=a+b\)
Bài 3: Tìm các chữ số a, b, c biết:
a) \(\overline{12ab}=\overline{ab}.26\)
b) \(\overline{7ab}=20.\overline{ab}+35\)
c) \(\overline{2ab2}=36.\overline{ab}\)
d) \(\overline{abc3}-1992=\overline{abc}\)
e*) \(\overline{ab}+\overline{bc}+\overline{ca}=\overline{abc}\)
Bài 1: Tìm \(\overline{abcde}\), biết
1) \(\sqrt{\overline{abcde}}\) = 5e + 1
2) \(\sqrt{\overline{abcde}}\) = \(\left(ab\right)^3\)
Bài 2: Cho a, b>0: \(a^{2012}\)+ \(b^{2012}\) = \(a^{2013}\)+\(b^{2013}\)=\(a^{2014}\)+\(b^{2014}\)
Bài 3: Tìm a, b, c: a.( a + b + c ) = \(-\dfrac{1}{24}\)
c.( a + b + c ) = \(-\dfrac{1}{72}\)
b.( a + b + c ) = \(\dfrac{1}{16}\)
(cứu mih với ạ uhuhuhu)
Bài 3.
\(\left\{{}\begin{matrix}a\left(a+b+c\right)=-\dfrac{1}{24}\left(1\right)\\c\left(a+b+c\right)=-\dfrac{1}{72}\left(2\right)\\b\left(a+b+c\right)=\dfrac{1}{16}\left(3\right)\end{matrix}\right.\)
Dễ thấy \(a,b,c\ne0\Rightarrow a+b+c\ne0\)
Chia (1) cho (2), ta được \(\dfrac{a}{c}=3\Rightarrow a=3c\left(4\right)\)
Chia (2) cho (3) ta được: \(\dfrac{c}{b}=-\dfrac{2}{9}\Rightarrow b=-\dfrac{9}{2}c\left(5\right)\).
Thay (4), (5) vào (2), ta được: \(-\dfrac{1}{2}c^2=-\dfrac{1}{72}\)
\(\Rightarrow c=\pm\dfrac{1}{6}\).
Với \(c=\dfrac{1}{6}\Rightarrow\left\{{}\begin{matrix}a=3c=\dfrac{1}{2}\\b=-\dfrac{9}{2}c=-\dfrac{3}{4}\end{matrix}\right.\)
Với \(c=-\dfrac{1}{6}\Rightarrow\left\{{}\begin{matrix}a=3c=-\dfrac{1}{2}\\b=-\dfrac{9}{2}c=\dfrac{3}{4}\end{matrix}\right.\)
Vậy: \(\left(a;b;c\right)=\left\{\left(\dfrac{1}{2};-\dfrac{3}{4};\dfrac{1}{6}\right);\left(-\dfrac{1}{2};\dfrac{3}{4};-\dfrac{1}{6}\right)\right\}\)
Tìm giá trị của k biết rằng:
a) k=\(\frac{\overline{ab}}{\overline{abc}}=\frac{\overline{bc}}{\overline{bca}}=\frac{\overline{ca}}{\overline{cab}}\)
b) k= \(\frac{\overline{abc}}{\overline{ab}+c}=\frac{\overline{bca}}{\overline{bc}+a}=\frac{\overline{cab}}{\overline{ca}+b}\)
Tìm các chữ số a và b,biết \(\overline{a,b}\)x \(\overline{ab,a}\)= \(\overline{ab,ab}\)
Ta có :
\(\overline{a,b}.\overline{ab,a}=\overline{ab,ab}\)
\(\Leftrightarrow\)\(\left(\overline{a,b}.10\right)\left(\overline{ab,a}.10\right)=\overline{ab,ab}.100\)
\(\Leftrightarrow\)\(\overline{ab}.\overline{aba}=\overline{abab}\)
\(\Leftrightarrow\)\(\overline{ab}.\overline{aba}=\overline{ab}.\left(100+1\right)\)
\(\Leftrightarrow\)\(\overline{aba}=101\)
\(\Rightarrow\)\(a=1\)\(;\)\(b=0\)
Vậy \(a=1\) và \(b=0\)
Thay các chữ cái bằng các chữ số thích hợp:
A) \(\overline{3a,b}\times\overline{0,b}=\overline{16,ab}\)
B)\(\overline{a,bc}\times4,1=\overline{15,abc}\)
C)\(\overline{ab,ab}\div\overline{ab}=\overline{ab,a}\)
D)\(\overline{aa,aa}\div\overline{ab,a}=\overline{a,a}\)
Mọi người trả lời, giải thích lời giải dùm em với ạ!!!
Cho hai số tự nhiên a và b.Tính a-b biết \(\overline{a+b=\sqrt{\overline{ab}}}\) và \(2\left(a+b\right)=\overline{ba}\)
1.Tìm các chữ số a,b,c biết:\(\frac{1}{\overline{ab}.\overline{bc}}+\frac{1}{\overline{bc}.\overline{ca}}+\frac{1}{\overline{ca}.\overline{ab}}=\frac{11}{3321}\)
2.Tìm tất cả các số nguyên dương x;y thoả mãn:(x+y)4=40x+41
tìm \(\overline{abcde}\) biết \(\overline{abcde}\) = 2.\(\overline{ab}\).\(\overline{cde}\)
Đáp án:
hoặc
Giải thích các bước giải:
CHO BIẾT \(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}\)
CHỨNG MINH RẰNG \(a=b=c\)
+ \(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{\overline{ab}+\overline{bc}-\overline{bc}-\overline{ca}+\overline{ca}+\overline{ab}}{a+b-b-c+c+a}=\frac{2\overline{ab}}{2a}=10+\frac{b}{a}\)
+ \(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{\overline{ab}+\overline{bc}+\overline{bc}+\overline{ca}-\overline{ca}-\overline{ab}}{a+b+b+c-c-a}=\frac{2\overline{bc}}{2b}=10+\frac{c}{b}\)
+ \(\frac{\overline{ab}+\overline{bc}}{a+b}=\frac{\overline{bc}+\overline{ca}}{b+c}=\frac{\overline{ca}+\overline{ab}}{c+a}=\frac{-\overline{ab}-\overline{bc}+\overline{bc}+\overline{ca}+\overline{ca}+\overline{ab}}{-a-b+b+c+c+a}=\frac{2\overline{ca}}{2c}=10+\frac{a}{c}\)
=> \(\frac{b}{a}=\frac{c}{b}=\frac{a}{c}\Rightarrow\frac{b+c+a}{a+b+c}=1\Rightarrow a=b=c\)