Những câu hỏi liên quan
NV
Xem chi tiết
NT
31 tháng 8 2021 lúc 19:48

a, \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{9}=\frac{y}{12}=\frac{z}{20}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3\Rightarrow x=27;y=36;z=60\)

b, \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}\Rightarrow\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=\frac{49}{\frac{49}{12}}=12\)

\(\Rightarrow x=18;y=24;z=30\)

Bình luận (0)
 Khách vãng lai đã xóa
NT
31 tháng 8 2021 lúc 19:59

c, \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-4}{4}\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}\)

Theo tính chất dãy tỉ số bằng nhau 

\(\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{z-4}{4}=\frac{2x+3y-z-2-6+4}{4+9-4}=\frac{46}{9}\)

\(\Rightarrow x=\frac{101}{9};y=\frac{52}{3};z=\frac{220}{9}\)

d, Đặt \(x=2k;y=3k;z=5k\Rightarrow xyz=810\Rightarrow30k^3=810\)

\(\Leftrightarrow k^3=27\Leftrightarrow k=3\)Với k = 3 thì \(x=6;y=9;z=15\)

Bình luận (0)
 Khách vãng lai đã xóa
NH
Xem chi tiết
MH
Xem chi tiết
HS
27 tháng 9 2019 lúc 20:08

Ta có : 3x = 2y => x/2 = y/3

7x = 5z => x/5 = z/7

 => x/2 = y/3 ; x/5 = z/7

 => x/10 = y/15 ; x/10 = z/21

 => x/10 = y/15 = z/21

 Áp dụng tính chất dãy tỉ số bằng nhau :

 x/10 = y /15 = z/21 = (x-y+z)/(10-15+21) = 32/16 = 2

đến đây xét x,y,z

 Câu b tương tự

Bình luận (0)
BD
Xem chi tiết
AK
6 tháng 7 2018 lúc 19:40

a )  

Ta có : 

\(\hept{\begin{cases}\frac{x}{5}=\frac{y}{6}\\\frac{y}{8}=\frac{z}{7}\end{cases}\Rightarrow\hept{\begin{cases}\frac{x}{20}=\frac{y}{24}\\\frac{y}{24}=\frac{z}{21}\end{cases}}}\)

và \(x+y-z=69\)

ADTCDTSBN , ta có : 

\(\frac{x}{20}=\frac{y}{24}=\frac{z}{21}=\frac{x+y-z}{20+24-21}=\frac{69}{23}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{20}=3\\\frac{y}{24}=3\\\frac{z}{21}=3\end{cases}\Rightarrow\hept{\begin{cases}x=3.20=60\\y=3.24=72\\z=3.21=63\end{cases}}}\)

Vậy ...

b )  

Ta có : 

\(5y=72\Rightarrow y=\frac{72}{5}=14,4\)

\(\Rightarrow x=14,4.3:2=21,6\)

và \(3x+5y-7z=30\)

Thay vào làm tiếp : 

c ) 

\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}\)

\(=\frac{3\left(x-1\right)}{6}=\frac{4\left(y+3\right)}{16}=\frac{5\left(z-5\right)}{30}\)

\(=\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}\)

\(=\frac{5z-25-\left(3x-3\right)-\left(4y+12\right)}{30-6-16}\)( ADTCDTSBN ) 

\(=\frac{5z-25-3x+3-4y-12}{8}=\frac{5z-3x-4y-34}{8}\)

\(=\frac{50-34}{8}=\frac{16}{8}=2\)

\(\Rightarrow\hept{\begin{cases}\frac{x-1}{2}=2\\\frac{y+3}{4}=2\\\frac{z-5}{6}=2\end{cases}\Rightarrow\hept{\begin{cases}x-1=2.2=4\\y+3=2.4=8\\z-5=2.6=12\end{cases}\Rightarrow}\hept{\begin{cases}x=5\\y=5\\z=17\end{cases}}}\)

Vậy ...

Bình luận (0)
KL
2 tháng 9 2018 lúc 14:35

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

Bình luận (0)
LV
Xem chi tiết
AH
16 tháng 7 2018 lúc 19:20

a) Ta có: x/10=y/6=z/24 và 5x+y—2x=28

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

x/10=y/6=z/24=5x/50+y/6–2x/48= 5x+y—2x/50+6–48=28/ 8

Ta được: x= 10.28/8=35

y= 6.28/8=21

z=24.28/8=84

Bình luận (0)
H24
2 tháng 9 2018 lúc 14:40

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{5}=\frac{y}{7}=\frac{z}{9}=\frac{x-y+z}{5-7+9}=\frac{315}{7}=45\)

  suy ra:   x/5 = 45   =>  x  =  225

               y/7 = 45  =>  y  =  315

               z/9 = 45  =>  z  =  405

Bình luận (0)
LV
21 tháng 10 2018 lúc 21:26

a, x/10 =y/6=z/24= 5x/50=y/6=2z/48

áp dụng tính chất dãy tỉ số bằng nhau

5x/50=y/6=2z/48= 5x+y-2z/50+6-48=28/2=14

==>x=140

      y=84

      z=336

b,x/6=y/4;y/5=z/7

==>x/15=y/20      (1)

      y/20=z/28      (2)

từ 1 và 2 => x/15=y/20=z/28 

x/15=y/20=z/28=2x/30=3y/60=z/28

áp dụng tính chất dãy tỉ số bàng nhau

2x/30=3y/60=z/38=2x+3y-z/30+60-28=186/62=3

=>x=45

=>y=60

=>z=84

Bình luận (0)
NH
Xem chi tiết
HM
Xem chi tiết
HH
29 tháng 6 2017 lúc 11:27

Từ \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)\(\Rightarrow\frac{2x-2}{4}=\frac{3y-6}{9}=\frac{3-z}{-4}\)

Ap dụng tính  chất của tỉ lệ thức ta có \(\frac{2x-2}{4}=\frac{2x-2+3y-6+3-z}{4+9-4}\)=\(\frac{2x+3y-z-5}{9}\)

Lại có 2x+3y-z=50\(\Rightarrow\frac{2x-2}{4}=\frac{50-5}{9}=5\Rightarrow2x-2=20\Rightarrow x=11\)

Tương tự \(\frac{y-2}{3}=5\Rightarrow y=17\)

\(\frac{z-3}{4}=5\Rightarrow z=23\)

Vậy x=11,y=17,z=23

Bình luận (0)
OD
29 tháng 6 2017 lúc 11:29

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)

Áp dụng tính chất dãy tỉ số bằng nhau, Ta có:

\(\frac{x-1+y-2-\left(z-3\right)}{2+3-4}\)=\(\frac{2x-2+3y-6-z+3}{4+9-4}\)

=\(\frac{2x-3y-z-2-6+3}{9}\)=\(\frac{2x-3y-z-\left(2+6-3\right)}{9}\)

=\(\frac{2x+3y-z-5}{9}=\frac{50-5}{9}=\frac{45}{9}=5\)

\(\frac{2x-2}{4}=5\)x = 11

\(\frac{3y-6}{9}=5\) y=17

\(\frac{z-3}{4}=5\)

z = 23

Bình luận (0)
NT
Xem chi tiết
NT
4 tháng 2 2022 lúc 21:12

a: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{10}=\dfrac{y}{15}=\dfrac{z}{21}=\dfrac{x-y+z}{10-15+21}=\dfrac{32}{16}=2\)

Do đó: x=20; y=30; z=42

b: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{\dfrac{3}{2}}=\dfrac{y}{\dfrac{4}{3}}=\dfrac{z}{\dfrac{5}{4}}=\dfrac{x+y+z}{\dfrac{3}{2}+\dfrac{4}{3}+\dfrac{5}{4}}=\dfrac{49}{\dfrac{49}{12}}=12\)

Do đó: x=18; y=16; z=15

c: Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x-1}{2}=\dfrac{y-2}{3}=\dfrac{z-3}{4}=\dfrac{2x+3y-z-2-6+3}{2\cdot2+3\cdot3-4}=5\)

Do đó: x-1=10; y-2=15; z-3=20

=>x=11; y=17; z=23

Bình luận (0)
DT
Xem chi tiết
VT
25 tháng 8 2019 lúc 20:29

Bài 26:

e) Ta có \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{9}=\frac{y}{12}.\)

\(\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{y}{12}=\frac{z}{20}.\)

=> \(\frac{x}{9}=\frac{y}{12}=\frac{z}{20}.\)

=> \(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\)\(2x-3y+z=6.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}=\frac{2x-3y+z}{18-36+20}=\frac{6}{2}=3.\)

\(\left\{{}\begin{matrix}\frac{x}{9}=3=>x=3.9=27\\\frac{y}{12}=3=>y=3.12=36\\\frac{z}{20}=3=>z=3.20=60\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(27;36;60\right).\)

i) Ta có: \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)

=> \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\)\(x.y.z=810.\)

Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow\left\{{}\begin{matrix}x=2k\\y=3k\\z=5k\end{matrix}\right.\)

\(x.y.z=810\)

=> \(2k.3k.5k=810\)

=> \(30k^3=810\)

=> \(k^3=810:30\)

=> \(k^3=27\)

=> \(k=3.\)

Với \(k=3\)

\(\Rightarrow\left\{{}\begin{matrix}x=3.2=6\\y=3.3=9\\z=3.5=15\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(6;9;15\right).\)

Mình chỉ làm 2 câu thôi nhé.

Chúc bạn học tốt!

Bình luận (0)
PK
26 tháng 8 2019 lúc 17:10

e) Ta có:

\(\frac{x}{3}=\frac{y}{4}\)\(\frac{x}{9}=\frac{y}{12}\) (1)

\(\frac{y}{3}=\frac{z}{5}\)\(\frac{y}{12}=\frac{z}{20}\) (2)

Từ (1) và (2) ⇒ \(\frac{x}{9}=\frac{y}{12}=\frac{x}{20}\)\(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\)

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{2x}{18}=\frac{3y}{36}=\frac{z}{20}\)

\(=\frac{2x-3y+z}{18-36+20}\)

\(=\frac{6}{2}=3\)

Bình luận (0)