Những câu hỏi liên quan
PB
Xem chi tiết
CT
6 tháng 9 2018 lúc 11:43

Giải bài 29 trang 83 Toán 8 Tập 1 | Giải bài tập Toán 8

a) Phân tích

Giả sử dựng được ΔABC thỏa mãn yêu cầu đề bài.

Đoạn thẳng BC dựng được vì đã biết độ dài.

Khi đó điểm A là giao điểm của:

+ Tia Bx tạo với đoạn thẳng BC góc 65º

+ Đường thẳng qua C và vuông góc với tia Bx vừa dựng.

b) Cách dựng:

- Dựng đoạn thẳng BC = 4cm.

- Dựng tia Bx tạo với BC một góc 65º.

- Dựng đường thẳng a qua C và vuông góc với Bx.

- Bx cắt a tại A.

ΔABC là tam giác cần dựng.

c) Chứng minh: ΔABC vừa dựng vuông tại A, góc B = 65º và BC = 4cm.

d) Biện luận: Ta luôn dựng được một tam giác thỏa mãn điều kiện đề bài.

Bình luận (0)
PB
Xem chi tiết
CT
27 tháng 2 2017 lúc 14:20

Giải bài 29 trang 83 Toán 8 Tập 1 | Giải bài tập Toán 8

a) Phân tích

Giả sử dựng được ΔABC thỏa mãn yêu cầu đề bài.

Đoạn thẳng BC dựng được vì đã biết độ dài.

Khi đó điểm A là giao điểm của:

+ Tia Bx tạo với đoạn thẳng BC góc 65º

+ Đường thẳng qua C và vuông góc với tia Bx vừa dựng.

b) Cách dựng:

- Dựng đoạn thẳng BC = 4cm.

- Dựng tia Bx tạo với BC một góc 65º.

- Dựng đường thẳng a qua C và vuông góc với Bx.

- Bx cắt a tại A.

ΔABC là tam giác cần dựng.

c) Chứng minh: ΔABC vừa dựng vuông tại A, góc B = 65º và BC = 4cm.

d) Biện luận: Ta luôn dựng được một tam giác thỏa mãn điều kiện đề bài.

Bình luận (0)
1M
Xem chi tiết
H24
4 tháng 5 2022 lúc 19:32

Áp dung định lí Pytago ta có

AB2 + AC2 = BC2

hay 32 + AC2 = 52

AC2 = 52-32

AC2 = 252-92

AC2\(\sqrt{16}\)

AC= 4cm

Bình luận (2)
HT
4 tháng 5 2022 lúc 19:37

Áp dung định lí Pytago ta có

AB2 + AC2 = BC2

hay 32 + AC2 = 52

AC2 = 52-32

AC2 = 25-9

AC = √16

AC= 4cm

Bình luận (1)
PB
Xem chi tiết
CT
13 tháng 2 2017 lúc 3:51

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Cách dựng:

- Dựng đoạn BC = 5cm

- Dựng góc ∠ CBx =  35 0

- Dựng CA ⊥ Bx ta có ∆ ABC dựng được.

Chứng minh:  ∆ ABC có  ∠ A = 90o,  ∠ B =  35 0 , BC = 5cm. Thỏa mãn điều kiện bài toán.

Bình luận (0)
SK
Xem chi tiết
H24
21 tháng 4 2017 lúc 17:51

Bài giải:

Sử dụng phương pháp dựng tam giác vuông đã được học.

Ta lần lượt thực hiên:

- Vẽ đoạn BC = 4cm.

- Vẽ tia Bx tạo với BC một góc 650

- Vẽ đường thẳng a qua C và vuông góc với Bx và cắt Bx tại A.

Khi đó ∆ABC là tam giác cần dựng.


Bình luận (0)
SD
Xem chi tiết
H24
11 tháng 4 2018 lúc 18:57

Bài giải:

Sử dụng phương pháp dựng tam giác vuông đã được học.

Học sinh tự vẽ hình

Ta lần lượt thực hiên:

- Vẽ đoạn BC = 4cm.

- Vẽ tia Bx tạo với BC một góc 65

- Vẽ đường thẳng a qua C và vuông góc với Bx và cắt Bx tại A.

Khi đó  ∆ABC là tam giác cần dựng.

Bình luận (0)
H24
11 tháng 4 2018 lúc 18:59

Ta lần lượt thực hiên:

– Vẽ đoạn BC = 4cm.

– Vẽ tia Bx tạo với BC một góc 650 

– Vẽ đường thẳng a qua C và vuông góc với Bx và cắt Bx tại A.

Khi đó  ∆ABC là tam giác cần dựng.

Bình luận (0)
PT
11 tháng 4 2018 lúc 18:59

Bài giải:

Sử dụng phương pháp dựng tam giác vuông đã được học.

Học sinh tự vẽ hình

Ta lần lượt thực hiên:

- Vẽ đoạn BC = 4cm.

- Vẽ tia Bx tạo với BC một góc 65

- Vẽ đường thẳng a qua C và vuông góc với Bx và cắt Bx tại A.

Khi đó  ∆ABC là tam giác cần dựng.

Bình luận (0)
PA
Xem chi tiết
LT
29 tháng 4 2019 lúc 13:44

a)Áp dụng Định lý Pythagoras cho tam giác vuông ABC:AB2+AC2=BC2<=>BC2-AB2=AC2=>AC2=152-122=81=>AC=9

b) Xét \(\Delta\)DBM và \(\Delta\)DCM:

                 DMB=DMC=90

                 BM=CM( M là trung điểm BC)

                 DM:chung

=>\(\Delta\)DBM=\(\Delta\)DCM(c-g-c)=>DC=DB

Xét \(\Delta\)ACD:A=90=>DC>DA

Mà DC=DB(chứng minh trên)

Nên:AD<DB

c)Xét \(\Delta\)BCG:BA \(\perp\)CG;GM\(\perp\)BC

Mà BA cắt GM tại D 

Nên: D là trực tâm tam giác BCG

Lại có:CH\(\perp\)GB

Suy ra: C;D;H thẳng hàng

c)Xét \(\Delta\)GBC:GM là đường cao đồng thời là đường trung tuyến

=>\(\Delta\)GBC cân tại G=>GM là đường phân giác

  Xét \(\Delta\)GDA và \(\Delta\)GDH:

               GAD=GHD=90

               GD:chung

                AGD=HGD

=>\(\Delta\)GAD=\(\Delta\)GDH(cạnh huyền- góc nhọn)

=>AD=HD=>DAH=DHA=(180-HDA)/2

Xét \(\Delta\)DBC:DC=DB(chứng minh trên)=>DCB=DBC=(180-BDC)/2

Do HDA=BDC(đối đỉnh)

Nên AHD=BCD

Mà C;H;D thẳng hàng(chứng minh trên)

Suy ra AH//BC

Bình luận (0)
LT
29 tháng 4 2019 lúc 13:46

A C G A H M D

Bình luận (0)
PA
29 tháng 4 2019 lúc 15:54

cảm ơn bạn đã giúp mình

Bạn ơi bạn vẽ lại hình giúp mình được ko ??? 

Bình luận (0)
LH
Xem chi tiết
KL
30 tháng 12 2023 lúc 9:12

a) tanB = AC/AB = 1/2

b) ∆ABC vuông tại A

⇒ BC² = AB² + AC² (Pytago)

= (2AC)² + AC²

= 5AC²

⇒ AC² = BC²/5

= 25/5

= 5

⇒ AC = √5

Bình luận (0)
LH
3 tháng 1 lúc 13:42

vậy tính tanC sao ạ

 

Bình luận (0)
PB
Xem chi tiết
CT
29 tháng 7 2017 lúc 5:09

Giải bài 30 trang 83 Toán 8 Tập 1 | Giải bài tập Toán 8

a) Phân tích:

Giả sử dựng được ΔABC thỏa mãn yêu cầu.

Ta dựng được đoạn BC vì biết BC = 2cm.

Khi đó điểm A là giao điểm của:

+ Tia Bx vuông góc với BC

+ Cung tròn tâm C bán kính 4cm.

b) Cách dựng:

+ Dựng đoạn thẳng BC = 2cm.

+ Dựng tia Bx vuông góc với cạnh BC.

+ Dựng cung tròn tâm C, bán kính 4cm. Cung tròn cắt tia Bx tại A.

Kẻ AC ta được ΔABC cần dựng.

c) Chứng minh

ΔABC có góc B = 90º, BC = 2cm.

A thuộc cung tròn tâm C bán kính 4cm nên AC = 4cm.

Vậy ΔABC thỏa mãn yêu cầu đề bài

d) Biện luận: Ta luôn dựng được một hình thang thỏa mãn điều kiện của đề bài.

Bình luận (0)
PB
Xem chi tiết
CT
28 tháng 12 2018 lúc 3:02

Giải bài 30 trang 83 Toán 8 Tập 1 | Giải bài tập Toán 8

a) Phân tích:

Giả sử dựng được ΔABC thỏa mãn yêu cầu.

Ta dựng được đoạn BC vì biết BC = 2cm.

Khi đó điểm A là giao điểm của:

+ Tia Bx vuông góc với BC

+ Cung tròn tâm C bán kính 4cm.

b) Cách dựng:

+ Dựng đoạn thẳng BC = 2cm.

+ Dựng tia Bx vuông góc với cạnh BC.

+ Dựng cung tròn tâm C, bán kính 4cm. Cung tròn cắt tia Bx tại A.

Kẻ AC ta được ΔABC cần dựng.

c) Chứng minh

ΔABC có góc B = 90º, BC = 2cm.

A thuộc cung tròn tâm C bán kính 4cm nên AC = 4cm.

Vậy ΔABC thỏa mãn yêu cầu đề bài

d) Biện luận: Ta luôn dựng được một hình thang thỏa mãn điều kiện của đề bài.

Bình luận (0)