GTNN : \(4x^2-3x+\frac{1}{4x}+2014\)với x>0
Tìm GTNN : \(A=4x^2-3x+\frac{1}{4x}+2014\)Với x>0
Cho x > 0, tìm GTNN của biểu thức:
M = \(4x^2-3x+\dfrac{1}{4x}+2014\)
M=(4x2-4x+1)+(x+\(\dfrac{1}{4x}\))+2013
=(2x-1)2+(x+\(\dfrac{1}{4x}\))+2013
x>0 nên áp dụng BĐT côsi cho 2 số không âm:
\(x+\dfrac{1}{4x}\ge2\sqrt{\dfrac{x}{4x}}=1\)
Dấu "=" xảy ra khi 4x2=1<=>x=\(\dfrac{1}{2}\)
(2x-1)2\(\ge\)0 với mọi x
Dấu "=" xảy ra khi x=\(\dfrac{1}{2}\)
=>M\(\ge\)0+1+2013=2014
=>Mmin=2014 khi và chỉ khi x=\(\dfrac{1}{2}\)
Vậy...
Tìm GTNN của:
a, A= 4x2 - 4x - + 1 với x ≥ \(\frac{3}{2}\)
b, B= 5x2 - 10x + 3 với x ≥ 1
c, C= 4x2 - 6x + 2 với x ≥ 0
d, D= 3x2 + 2x + 1 với x ≥ -1
Lời giải:
a)
\(A=4x^2-4x+1=2x(2x-3)+2x+1=2x(2x-3)+(2x-3)+4\)
\(=(2x+1)(2x-3)+4\)
Với \(x\geq \frac{3}{2}\Rightarrow \left\{\begin{matrix} 2x+1>0\\ 2x-3\geq 0\end{matrix}\right.\Rightarrow A=(2x+1)(2x-3)+4\geq 4\)
Vậy GTNN của $A$ là $4$ khi $x=\frac{3}{2}$
b)
\(B=5x^2-10x+3=5(x^2-2x+1)-2\)
\(=5(x-1)^2-2\)
Ta thấy \((x-1)^2\geq 0, \forall x\geq 1\Rightarrow B=5(x-1)^2-2\geq -2\)
Vậy GTNN của $B$ là $-2$ khi $(x-1)^2=0\Leftrightarrow x=1$
c)
\(C=4x^2-6x+2=(2x)^2-2.2x.\frac{3}{2}+(\frac{3}{2})^2-\frac{1}{4}\)
\(=(2x-\frac{3}{2})^2-\frac{1}{4}\)
Ta thấy \((2x-\frac{3}{2})^2\geq 0, \forall x\geq 0\Rightarrow C=(2x-\frac{3}{2})^2-\frac{1}{4}\geq -\frac{1}{4}\)
Vậy GTNN của $C$ là $\frac{-1}{4}$ khi \((2x-\frac{3}{2})^2=0\Leftrightarrow x=\frac{3}{4}\)
d)
\(D=3x^2+2x+1=3(x^2+\frac{2}{3}x+\frac{1}{9})+\frac{2}{3}\)
\(=3(x+\frac{1}{3})^2+\frac{2}{3}\)
Ta thấy \((x+\frac{1}{3})^2\geq 0, \forall x\geq -1\Rightarrow D=3(x+\frac{1}{3})^2+\frac{2}{3}\geq \frac{2}{3}\)
Vậy GTNN của $D$ là $\frac{2}{3}$ khi $(x+\frac{1}{3})^2=0\Leftrightarrow x=-\frac{1}{3}$
tìm GTNN của A = \(\frac{4y^2-4x^2+6xy}{x^2+y^2}\)
với 0 <x<1 tìm GTNN của C =\(\frac{x}{1-x}+\frac{5}{x}\)
tìm GTLN của D = 3x^2 ( 5 - 3x^2 )
a, Tìm GTNN của: A=5x2+4xy+y2+6x+2y+2012
b, Với x>0, Tìm GTNN của M=4x2-3x+\(\frac{1}{4x}\)+2016
Tìm GTNN của:
a, A= 4x2 - 4x - + 1 với x ≥ \(\frac{3}{2}\)
b, B= 5x2 - 10x + 3 với x ≥ 1
c, C= 4x2 - 6x + 2 với x ≥ 0
d, D= 3x2 + 2x + 1 với x ≥ -1
b) B= 5x2 -10x+3-2
B = (5x2 - 2.5.1 . 12)-2
B = (5x-1)2-2
ta có :
(5x-1)2 > 0 với mọi x thuộc R
(5x-1)2 -2 < -2
vậy B < -2
dấu = xảy ra <=> x = 1/5
mai tui lm nốt choa
a)
\(A=4x^2-4x-1=4x^2-4x+1-2=\left(2x-1\right)^2-2\)
\(A\ge-2\forall x\in R\)
Dấu "=" xảy ra <=>\(\left(2x-1\right)^2=0\Leftrightarrow2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
Vậy Amin =-2 tại x=1/2
Cho x>0. Tìm gtln của biểu thức:
\(P=3x-4x^2-\frac{1}{4x}+2014\)
Giúp mk vs các bn eii
\(P=-\left(4x^2-4x+1+x+\frac{1}{4x}-2015\right)\)
\(=-\left[\left(2x-1\right)^2+\frac{\left(2x-1\right)^2}{4x}\right]+2014\)
\(P\le2014\forall x>0\)
Dấu "=" xảy ra <=> x=\(\frac{1}{2}\)
Với x>0, tìm GTNN của biểu thức: \(M=4x^2-3x+\dfrac{1}{4x}+2017\)
\(M=4x^2-3x+\dfrac{1}{4x}+2017\)
\(=\left(4x^2-4x+1\right)+\left(x+\dfrac{1}{4x}\right)+2016\ge2017\)
\(3x-4x^2-\frac{1}{4x}+2014\) chox>0 tim GTLN cua bt tren :