7 + 6n chia hết cho 2n - 1
(15-2n)chia hết cho n+1 (n<7;=7)
(6n+9)chia hết cho (4n-1) (n>1;=1)
Tìm số tự nhiên n để:
a) (2n+7) chia hết cho (n-1)
b) (6n+15) chia hết (2n+1)
Tìm n biết
a; 3n +19 chia hết cho n+1
B; 2n+7 chia hết cho n+2
c; 6n+39 chia hết cho 2n+1
a) \(3n+19⋮n+1\)
\(\Rightarrow\)\(3\left(n+1\right)+16⋮n+1\)
mà \(3\left(n+1\right)⋮n+1\)\(\Rightarrow\)\(16⋮n+1\)
\(\Rightarrow\)\(n+1\in\left\{1,-1,2,-2,4,-4,8,-8,16,-16\right\}\)
\(\Rightarrow n\in\left\{0,-2,1,-3,3,-5,7,-9,15,-17\right\}\)
b) \(2n+7⋮n+2\)
\(\Rightarrow2\left(n+2\right)+3⋮n+2\)
mà \(2\left(n+2\right)⋮n+2\Rightarrow3⋮n+2\)
\(\Rightarrow n+2\in\left\{1,3,-1,-3\right\}\)
\(\Rightarrow n\in\left\{-1,1,-3,-5\right\}\)
c)\(6n+39⋮2n+1\Rightarrow3\left(2n+1\right)+36⋮2n+1\)
mà\(3\left(2n+1\right)⋮2n+1\)\(\Rightarrow36⋮2n+1\)
\(\Rightarrow2n+1\in\left\{1,-1,2,-2,3,-3,4,-4,6,-6,9,-9,12,-12,18,-18,36,-36\right\}\)
\(\Rightarrow2n\in\left\{0,-2,1,-3,2,-4,3,-5,5,-7,8,-10,11,-13,17,-19,35,-37\right\}\)
\(\Rightarrow\)\(n\in\left\{0,-1,1,-2,4,-5\right\}\)
Tìm n để 6n+7 chia hết cho 2n-1
De 6n+7 chia het cho 2n-1
thi 6n+7 chia het cho 2n-1 va 2n-1 chia het cho 2n-1
=> 6n+7 chia het cho 2n-1 va 3.(2n-1) chia het cho 2n-1
=> 6n+7 chia het cho 2n-1 va 6n-3 chia het cho 2n-1
=> (6n+7)-(6n-3) chia het cho 2n-1
=> 6n+7-6n+3 chia het cho 2n-1
=> 10 chia het cho 2n-1
=> 2n-1 thuoc U(10)={1, -1, 2, -2, 5, -5, 10, -10}
phan con lai ban tu lam tiep nhe
Tìm n để 6n+7 chia hết cho 2n-1
Vì 6n + 7 ⋮ 2n - 1 ⇒ 2n + 2n + 2n - 1 - 1 - 1 + 10 ⋮ 2n 1
⇒ ( 2n - 1 ) + ( 2n - 1 ) + ( 2n - 1 ) + 10 ⋮ 2n - 1
Vì 2n - 1 ⋮ 2n - 1 . Để ( 2n - 1 ) + ( 2n - 1 ) + ( 2n - 1 ) + 10 ⋮ 2n - 1 ⇒ 10 ⋮ 2n - 1
⇒ 2n - 1 ∈ Ư ( 10 )
⇒ Ư ( 10 ) = { + 1 ; + 2 ; + 5 ; + 10 }
⇒ 2n - 1 = + 1 ; + 2 ; + 5 ; + 10
⇒ 2n = 2 ; 0 ; 3 ; - 1 ; 6 ; - 4 ; 11 ; - 9
⇒ n = 1 ; 0 ; 3 ; - 2
Vậy n = { - 2 ; 0 ; 1 ; 3 }
Tìm n để 6n + 7 chia hết cho 2n-1
Tìm số tự nhiên n sao cho
a, (4n - 5) chia hết cho (2n -1)
b, (6n + 7) chia hết cho (3n - 2)
a: =>4n-2-3 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;3;-3\right\}\)
=>\(n\in\left\{1;0;2\right\}\)
b: =>6n-4+11 chia hết cho 3n-2
=>\(3n-2\in\left\{1;-1;11;-11\right\}\)
=>\(n\in\left\{1\right\}\)
Tìm số tự nhiên n sao cho
a, (4n - 5) chia hết cho (2n -1)
b, (6n + 7) chia hết cho (3n - 2)
Tìm n thuộc N:
1) 3n + 5 chia hết cho n - 4
2) 6n + 7 chia hết cho 3n - 1
3) 4n + 8 chia hết cho 3n - 2
4) 2n - 7 chia hết cho n + 2
5) 3n - 4 chia hết cho 3 - n
6) 2n - 5 chia hết cho n + 1
7) 3n - 7 chia hết cho 2n + 3
8) n - 5 chia hết cho n - 1
1: =>3n-12+17 chia hết cho n-4
=>\(n-4\in\left\{1;-1;17;-17\right\}\)
hay \(n\in\left\{5;3;21;-13\right\}\)
2: =>6n-2+9 chia hết cho 3n-1
=>\(3n-1\in\left\{1;-1;3;-3;9;-9\right\}\)
hay \(n\in\left\{\dfrac{2}{3};0;\dfrac{4}{3};-\dfrac{2}{3};\dfrac{10}{3};-\dfrac{8}{3}\right\}\)
4: =>2n+4-11 chia hết cho n+2
=>\(n+2\in\left\{1;-1;11;-11\right\}\)
hay \(n\in\left\{-1;-3;9;-13\right\}\)
5: =>3n-4 chia hết cho n-3
=>3n-9+5 chia hết cho n-3
=>\(n-3\in\left\{1;-1;5;-5\right\}\)
hay \(n\in\left\{4;2;8;-2\right\}\)
6: =>2n+2-7 chia hết cho n+1
=>\(n+1\in\left\{1;-1;7;-7\right\}\)
hay \(n\in\left\{0;-2;6;-8\right\}\)