Những câu hỏi liên quan
VG
Xem chi tiết
DL
Xem chi tiết
LL
28 tháng 9 2021 lúc 8:10

a) \(N=\left(\dfrac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}-\dfrac{x\left(x-\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x-\sqrt{x}+1\right)}\right).\left(\sqrt{x}+1\right)=\left(\dfrac{\sqrt{x}-1}{\sqrt{x}+1}-\dfrac{x}{\sqrt{x}+1}\right).\left(\sqrt{x}+1\right)=\dfrac{-x+\sqrt{x}-1}{\sqrt{x}+1}\left(\sqrt{x}+1\right)=-x+\sqrt{x}-1\)

b) \(N=-x+\sqrt{x}-1=-\left(x-\sqrt{x}+\dfrac{1}{4}\right)-\dfrac{3}{4}=-\left(\sqrt{x}-\dfrac{1}{2}\right)^2-\dfrac{3}{4}\le-\dfrac{3}{4}\)

\(maxN=-\dfrac{3}{4}\Leftrightarrow\sqrt{x}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{1}{4}\left(tm\right)\)

Bình luận (0)
MM
Xem chi tiết
H24
Xem chi tiết
NL
4 tháng 4 2021 lúc 21:55

\(\Delta=a^2+8>0\Rightarrow\) pt luôn có 2 nghiệm

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=a\\x_1x_2=-2\end{matrix}\right.\)

\(N=x_1^2+x_2^2+x_1x_2+2\left(x_1+x_2\right)+4\)

\(=\left(x_1+x_2\right)^2-x_1x_2+2\left(x_1+x_2\right)+4\)

\(=a^2+2+2a+4\)

\(N=a^2+2a+6=\left(a+1\right)^2+5\ge5\)

\(N_{min}=5\) khi \(a=-1\)

Bình luận (0)
NH
Xem chi tiết
HS
27 tháng 8 2019 lúc 20:38

\(C=4,5\cdot\left|2x-0,5\right|-0,25\)

Do \(\left|2x-0,5\right|\ge0\)

=> \(C=4,5\cdot\left|2x-0,5\right|-0,25\ge-0,25\)

Dấu bằng xảy ra khi và chỉ khi \(\left|2x-0,5\right|=0\)hay \(\left|2x-\frac{1}{2}\right|=0\)=> \(2x=\frac{1}{2}\)=> \(x=\frac{1}{2}:2=\frac{1}{4}\)

Vậy Cmin = -1/4 khi x = 1/4

\(D=-\left|3x+4,5\right|+0,75\)

Do \(\left|3x+4,5\right|\ge0\)

=> \(-\left|3x+4,5\right|\le0\)

=> \(D=-\left|3x+4,5\right|+0,75\le0,75\)

Dấu bằng xảy ra khi và chỉ khi \(\left|3x+4,5\right|=0\)=> \(\left|3x+\frac{9}{2}\right|=0\)=> \(3x=-\frac{9}{2}\)=> x = \(-\frac{9}{2}:3=\frac{-9}{6}=\frac{-3}{2}\)

Vậy Dmax = 0,75 khi x = -3/2

\(E=\left|x-2005\right|+\left|x-2004\right|\)

\(=\left|x-2005\right|+\left|2004-x\right|\)

\(\ge\left|x-2005+2004-x\right|=\left|-1\right|=1\)

Vậy \(E\ge1\), E đạt giá trị nhỏ nhất là 1 khi \(2004\le x\le2005\)

Bình luận (0)
PB
Xem chi tiết
CT
25 tháng 9 2017 lúc 13:53

Bình luận (0)
H24
Xem chi tiết
H24
27 tháng 1 2022 lúc 7:30

Vì | x- 4,5| ≥ 0 nên 0,5 - | x- 4,5 | ≤ 0,5

Ta có : B ≤ 0,5 và B= 0,5

⇒ x= 4,5

Vậy giá trị lớn nhất của B = 0,5 vì x= 4,5

Bình luận (6)
H24
27 tháng 1 2022 lúc 7:32

\(Do.\left|x-4,5\right|\ge0\forall x\\ \Rightarrow0,5-\left|x-4,5\right|>0,5\) 

Dấu "=" \(\Leftrightarrow\left|x-4,5\right|=0.hay.\left|x-\dfrac{9}{2}\right|=0\) 

\(\Rightarrow x=\dfrac{9}{2}\)  

Bình luận (1)
MH
Xem chi tiết
AH
22 tháng 1 2022 lúc 0:15

Bài 1: Ta có:

\(M=\frac{ad}{abcd+abd+ad+d}+\frac{bad}{bcd.ad+bc.ad+bad+ad}+\frac{c.abd}{cda.abd+cd.abd+cabd+abd}+\frac{d}{dab+da+d+1}\)

\(=\frac{ad}{1+abd+ad+d}+\frac{bad}{d+1+bad+ad}+\frac{1}{ad+d+1+abd}+\frac{d}{dab+da+d+1}\)

$=\frac{ad+abd+1+d}{ad+abd+1+d}=1$

Bình luận (0)
AH
22 tháng 1 2022 lúc 0:31

Bài 2:

Vì $a,b,c,d\in [0;1]$ nên

\(N\leq \frac{a}{abcd+1}+\frac{b}{abcd+1}+\frac{c}{abcd+1}+\frac{d}{abcd+1}=\frac{a+b+c+d}{abcd+1}\)

Ta cũng có:
$(a-1)(b-1)\geq 0\Rightarrow a+b\leq ab+1$

Tương tự:

$c+d\leq cd+1$

$(ab-1)(cd-1)\geq 0\Rightarrow ab+cd\leq abcd+1$

Cộng 3 BĐT trên lại và thu gọn thì $a+b+c+d\leq abcd+3$

$\Rightarrow N\leq \frac{abcd+3}{abcd+1}=\frac{3(abcd+1)-2abcd}{abcd+1}$

$=3-\frac{2abcd}{abcd+1}\leq 3$

Vậy $N_{\max}=3$

Bình luận (2)
TH
21 tháng 5 2022 lúc 20:25

3.

Hình vẽ:

undefined

Lời giải:

a) △AMC và △BNC có: \(\widehat{AMC}=\widehat{BNC}=90^0;\widehat{ACB}\) là góc chung.

\(\Rightarrow\)△AMC∼△BNC (g-g).

\(\Rightarrow\dfrac{AC}{BC}=\dfrac{CM}{CN}\Rightarrow AC.CN=BC.CM\left(1\right)\)

b) △AMB và △CPB có: \(\widehat{AMB}=\widehat{CPB}=90^0;\widehat{ABC}\) là góc chung.

\(\Rightarrow\)△AMB∼△CPB (g-g)

\(\Rightarrow\dfrac{AB}{CB}=\dfrac{BM}{BP}\Rightarrow AB.BP=BC.BM\left(2\right)\)

Từ (1) và (2) suy ra:

\(AC.CN+AB.BP=BC.CM+BC.BM=BC.\left(CM+BM\right)=BC.BC=BC^2\left(đpcm\right)\)b) Gọi \(M_0\) là trung điểm BC, giả sử \(AB< AC\).

\(\widehat{HBM}=90^0-\widehat{BHM}=90^0-\widehat{AHN}=\widehat{CAM}\)

△HBM và △CAM có: \(\widehat{HBM}=\widehat{CAM};\widehat{HMB}=\widehat{CMA}=90^0\)

\(\Rightarrow\)△HBM∼△CAM (g-g) 

\(\Rightarrow\dfrac{MH}{CM}=\dfrac{BM}{MA}\Rightarrow MH.MA=BM.CM\)

Ta có: \(BM.CM=\left(BM_0-MM_0\right)\left(CM_0+MM_0\right)=\left(BM_0-MM_0\right)\left(BM_0+MM_0\right)=BM_0^2-MM_0^2\le BM_0^2=\dfrac{BC^2}{4}\)

\(\Rightarrow MH.MA\le\dfrac{BC^2}{4}\).

Vì \(BC\) không đổi nên: \(max\left(MH.MA\right)=\dfrac{BC^2}{4}\), đạt được khi △ABC cân tại A hay A nằm trên đường trung trực của BC.

c) Sửa đề: \(S_1.S_2.S_3\le\dfrac{1}{64}.S^3\)

△AMC∼△BNC \(\Rightarrow\dfrac{AC}{BC}=\dfrac{MC}{NC}\Rightarrow\dfrac{AC}{MC}=\dfrac{BC}{NC}\)

△ABC và △MNC có: \(\dfrac{AC}{MC}=\dfrac{BC}{NC};\widehat{ACB}\) là góc chung.

\(\Rightarrow\)△ABC∼△MNC (c-g-c)

\(\Rightarrow\dfrac{S_{MNC}}{S_{ABC}}=\dfrac{S_1}{S}=\dfrac{MC}{AC}.\dfrac{NC}{BC}\left(1\right)\)

Tương tự: 

△ABC∼△MBP \(\Rightarrow\dfrac{S_{MBP}}{S_{ABC}}=\dfrac{S_2}{S}=\dfrac{MB}{AB}.\dfrac{BP}{BC}\left(2\right)\)

△ABC∼△ANP \(\Rightarrow\dfrac{S_{ANP}}{S_{ABC}}=\dfrac{S_3}{S}=\dfrac{AN}{AB}.\dfrac{AP}{AC}\left(3\right)\)

Từ (1), (2), (3) suy ra:

\(\dfrac{S_1}{S}.\dfrac{S_2}{S}.\dfrac{S_3}{S}=\left(\dfrac{MC}{AC}.\dfrac{NC}{BC}\right).\left(\dfrac{MB}{AB}.\dfrac{BP}{BC}\right).\left(\dfrac{AN}{AB}.\dfrac{AP}{AC}\right)\) 

\(\Rightarrow\dfrac{S_1}{S}.\dfrac{S_2}{S}.\dfrac{S_3}{S}=\left(\dfrac{MC.MB}{AC.AB}\right).\left(\dfrac{BP.AP}{AC.BC}\right).\left(\dfrac{AN.CN}{AB.BC}\right)\) (*)

Áp dụng câu b) ta có:

\(\left\{{}\begin{matrix}BM.CM\le\dfrac{1}{4}BC^2\\AP.BP\le\dfrac{1}{4}AB^2\\AN.CN\le\dfrac{1}{4}AC^2\end{matrix}\right.\)

Từ (*) suy ra:

\(\dfrac{S_1}{S}.\dfrac{S_2}{S}.\dfrac{S_3}{S}\le\left(\dfrac{\dfrac{1}{4}BC^2}{AC.AB}\right).\left(\dfrac{\dfrac{1}{4}AC^2}{AC.BC}\right).\left(\dfrac{\dfrac{1}{4}AB^2}{AB.BC}\right)=\dfrac{1}{64}\)

\(\Rightarrow S_1.S_2.S_3\le\dfrac{1}{64}.S^3\)

Dấu "=" xảy ra khi △ABC đều.

 

 

Bình luận (0)
TV
Xem chi tiết