Cho tam giác ABC cân tại A và có góc A nhọn. Vẽ đường cao BH. Chứng minh rằng : AH/CH=2(AB/BC)2-1
Cho tam giác ABC cân tại A ( góc A nhọn), đường cao BH. Chứng minh \(\frac{AH}{BH}=2\left(\frac{AB}{BC}\right)^2-1\)
vẽ thêm đường phụ là góc D đối xứng C qua A là dc
1)
Cho tam giác ABC có ba góc nhọn, vẽ hai đường cao AD và BE cắt nhau tại H. Cho biết góc ACB = 50 độ.
a) Chứng minh CH vuông góc AB
b) Tính góc BHD và góc DHE?
2)
Bài 1: Cho tam giác ABC cân tại A. Vẽ AH vuông góc với BC tại H, có AB = 5cm, BC = 6cm.
1) Chứng minh hai tam giác ABH và ACH bằng nhau
2) Tìm độ dài đoạn AH?
c) Hãy cho biết trong tam giác trên AH là đường nào trong các đường sau: đường trung tuyến, đường cao, đường phân giác, đường trung trực?
Bài 1 : Cho tam giác ABC cân tại A đường cao AH . Biết AB=5cm , BC=6cm
a) tính độ dài các đoạn thẳng AH , BH
b) Gọi G là trọng tâm của tam giác ABC Chứng minh rằng ba điểm A , G , H thẳng hàng
c) Chứng minh góc ABG = ACG
Bài 2 : Cho tam giác ABC cân tại A . Gọi M là trung điểm của cạnh BC
a) chứng minh tam giác ABM = ACM
b) Từ M vẽ MH vuông góc AB và MK vuông góc AC . Chứng Minh BH = CK
c) Từ B vẽ BP vuông góc với AC , BP cắt MH tại I , Chứng minh tam giác IBM cân
Bài 1:Cho góc xOy có Oz là tia phân giác,M là điểm bất kì thuộc tia Oz.Qua M kẻ đường thẳng a vuông góc với Ox tại A cắt Oy tại C và vẽ đường thẳng b vuông góc với Oy tại B cắt tia Ox tại D.
a,CM tam giác AOM bằng tam giác BOM từ đó suy ra OM là đường trung trực của đoạn thẳng AB
b,Tam giác DMC là tam giác gì?Vì sao?
c,CM DM + AM < DC
Bài 2:Cho tam giác ABC có góc A=90* và đường phân giác BH(H thuộc AC).Kẻ HM vuông góc với BC(M thuộc BC).Gọi N là giao điểm của AB và MH.CM:
a, Tam giác ABGH bằng tam giác MBH.
b, BH là đường trung trực của đoạn thẳng AH
c, AM // CN
d, BH vuông góc với CN
Bài 3:Cho tam giác ABC vuông góc tại C có góc A = 60* và đường phân giác của góc BAC cắt BC tại E.Kẻ EK vuông góc với BK tại K(K thuộc AB).Kẻ BD vuông góc với AE tại D(D thuộc AE).CM:
a, Tam giác ACE bằng tam giác AKE
b, BE là đường trung trực của đoạn thẳng CK
c, KA=KB
d, EB>EC
Bài 4:Cho tam giác ABC vuông tại A có đường phân giác của góc ABC cắt AC tại E.Kẻ EH vuông góc BC tại H(H thuộc BC).CM:
a, Tam giác ABE bằng tam giác HBE
b, BE là đường trung trực của đoạn thẳng AH
c, EC > AE
Bài 5:Cho tam giác ABC vuông tại A có đường cao AH
1,Biết AH=4cm,HB=2cm,Hc=8cm:
a,Tính độ dài cạnh AB,AC
b,CM góc B > góc C
2,Giả sử khoảng cách từ điểm A đến đường thẳng chứa cạnh BC là không đổi.Tam giác ABC cần thêm điều kiện gì để khoảng cách BC là nhỏ nhất.
Bài 6:Cho tam giác ABC vuông tại A có đường cao AH.Trên cạnh BC lấy điểm D sao cho BD=BA.
a,CM góc BAD= góc BDA
b,CM góc HAD+góc BDA=góc DAC+góc DAB.Từ đó suy ra AD là tia phân giác của góc HAC
c,Vẽ DK vuông góc AC.Cm AK=AH
d,Cm AB+AC<BC+AH
Bài 7:Cho tam giac ABC vuông tại C.Trên cạnh AB lấy điểm D sao cho AD = AC.kẻ qua D đường thẳng vuông góc với AB cắt BC tại E. AE cắt CD tại I.
a,CM AE là phân giác \{CAB}
b,CM AE là trung trực của CD
c,So sánh CD và BC
d,M là trung điểm của BC,DM cắt BI tại G,CG cắt DB tại K.CM K là trung điểm của DB
Bài 8:Cho tam giác ABC có BC=2AB.Gọi M là trung điểm của BC,N là trung điểm của BM.Trên tia đối của NA lấy điểm E sao cho AN=EN.CM:
a,Tam giác NAB=Tam giác NEM
b,Tam giác MAB là tam giác cân
c,M là trọng tâm của Tam giác AEC
d,AB>\frac{2}{3}AN
1) Cho tam giác ABC có AB>AC, đường cao AH.
a) Chứng minh rằng AB^2 - AC^2=BH^2 - CH^2
b) Lấy điểm m thuộc đường cao AH. CMR: AB^2 - AC^2= BM^2 - CM^2
5) Cho tam giác ABC. Các tia phân giác của các góc ngoài tại đỉnh B và C cắt nhau ở K. Đường vuông góc với AK tại K, cắt đường thẳng AB, AC ở D và E. Chứng minh rằngtam giác ADE là tam giác cân.
Cho tam giác ABC cân tại A, có góc A nhọn . Vẽ đường cao BH. CMR: \(\frac{AH}{HC}=2\left(\frac{AB}{BC}\right)^2-1\)
Kẻ đường cao AK.
- ΔABC cân tại A có đường cao AH đồng thời là đường trung tuyến nên BK = CK = BC/2
- Xét ΔAKC và ΔBHC có :
Góc AKC = góc BHC = 90⁰ (AK, BH là đường cao trong ΔABC)
Góc C chung
Vậy ΔAKC đồng dạng với ΔBHC (g.g.)
⇨ AC/BC = KC/HC
⇔ AB/BC = BC/2HC (AB = AC do ΔABC cân tại A, KC = BC/2 cmt)
⇔ 2AB.HC = BC² (tỉ lệ thức : ngoại tỉ bằng trung tỉ)
⇔ 1/HC = 2AB/BC²
⇔ AB/HC = 2AB²/BC² (nhân AB vào 2 vế)
⇔ AC/HC = 2(AB/BC)² (AB = AC)
⇔ (AH + HC)/HC = 2(AB/BC)²
⇔ AH/HC + 1 = 2(AB/BC)²
⇔ AH/HC = 2(AB/BC)² - 1 (điều cần chứng minh)
1) Tam giác ABC vuông tại A. Vẽ ở phía ngoài các tam giác ABD, ACE vuông cân tại A. Có AH là đường cao tam giác ABC, AH cắt DE tại K. CMR: K là trung điểm DE.
2) Cho tam giác cân ABC, M bất kì thuộc BC. Kẻ ME, MF vuông góc với AC, AB. Kẻ BH vuông góc AC. Chứng minh ME + MF = BH
Cho tam giác ABC vuông tại A có AB=6cm, AC=8cn. Vẽ đường cao AH
a) tính BC
b) chứng minh rằng AB^2=BH*BC. Tính BH, HC
c) vẽ tia phân giác AD của góc A (D thuộc BC). Chứng minh rằng H nằm giữa B và D.
a) sử dụng Py-ta-go
b) tam giác đồng dạng
c) t/c đường p.g
a) áp dụng định lý py-ta-go dối với ▲ABC vuông tại A ta có:
BC2=AB2+AC2
BC=10 cm
b)cm ▲HBA dồng dạng ▲ABC(g-g)
suy ra \(\frac{AB}{BC}=\frac{BH}{AB}\)
\(\Rightarrow AB^2=BH\cdot BC\)
thay số vào ta có : 62=BHx10
BH=3.6 cm
HC=BC-BH=10-3.6=6.4 cm
Cho tam giác ABC. Vẽ AH vuông góc BC (H thuộc BC). Về phía ngoài tam giác ABC vẽ các tam giác ABD và ACE vuông cân tại A. Đường thẳng AH cắt DE tại M.
a) Chứng minh: BD^2+CE^2=2.(AB^2+AC^2)=2.BH^2+4.AH^2+2.CH^2
b) Vẽ DP vuông góc AH tại P, EQ vuông góc AH tại Q. Chứng minh AP = BH
c) Chứng minh M là trung điểm của DE
d) Đường thẳng qua D song song với AE và đường thẳng qua E song song với AD cắt nhau tại F. Chứng minh F, A, H thẳng hàng.
1. Cho tam giác ABC có ba góc nhọn, AB < AC. Qua trung điểm D của cạnh BC kẻ đường thẳng vuông góc với tia phân giác của góc BAC cắt các đường thẳng AB và AC lần lượt tại H và K.
a) Chứng minh rằng: tam giác AHK cân.
b)Chứng minh rằng: BH=CK
c)Tính AH, BH biết AB = 9cm, AC = 12cm.
bài này khó quá
Chẳng hiểu tại sao Mình chẳng thấy gì ở bài làm của cô Chi mà mình vẫn cứ k đúng ???
Bài 6 (các câu khác nhau thì không liên quan đến nhau)
a) Cho tam giác ABC, kẻ BH AC ( H AC); CK AB ( K AB). Biết BH = CK.
Chứng minh tam giác ABC cân.
Tết đến tưng bừng, vui mừng làm Toán
Giáo viên: Nguyễn Cao Uyển Mi
b) Cho Tam giác ABC, gọi M, N lần lượt là trung điểm các cạnh AB, AC. Biết CM =
BN. Chứng tỏ tam giác ABC cân.
c) Cho tam giác ABC cân tại A, Tia phân giác của góc B và góc C cắt AC và AB lần
lượt tại D và E. Chứng minh BD = CE.
Bài 7: Cho tam giác ABC cân tại A. Trên tia đối của tia BC lấy điểm D, trên tia đối của tia
CB lấy điểm E sao cho BD = CE. Kẻ BH vuông góc với AD tại H, CK vuông góc với AE
tại K. Hai đường thẳng HB và KC cắt nhau tại I. Chứng minh rằng:
a) Tam giác ADE cân.
b) Tam giác BIC cân.
c) IA là tia phân giác của góc BIC.
Bài 8: Cho tam giác ABC vuông tại A, có AB = 5cm, BC = 13cm. Kẻ AH vuông góc với
BC tại H. Tính độ dài các đoạn thẳng: AC, AH, BH, CH.
Bài 9: (các câu khác nhau thì không liên quan đến nhau)
a) Cho tam giác ABC vuông tại A, đường cao AH = 2cm. Tính các cạnh của tam giác
ABC biết: BH = 1cm, HC = 3cm.
b) Cho tam giác ABC đều có AB = 5cm. Tính độ dài đường cao BH?
Bài 10: Cho tam giác ABC có góc A nhỏ hơn 900. Vẽ ra phía ngoài tam giác ABC các
tam giác vuông cân đỉnh A là MAB, NAC.
a) Chứng minh: MC = NB.
b) Chứng minh: MC NB
c) Giả sử tam giác ABC đều cạnh 4 cm. Tính MB, NC và chứng minh MN // BC.
Giúp mình với ạ, mik đang cần gấp
Ai giúp mik với mik đang cần gấp ạ