9x(2-3x^2)+(3x-2)^3=(2x-3)(2x+3)-18x(3x-2)-4x^2
Bài:Chia 1 biến đã sắp xếp 1)(2x^3+11x^2+18x-3):(2x+3) 2)(2x^3+11x^2+18x-3):(3x+3) 3)(2x^3+9x^2+5x+41):(2x^2-x+9) 4)(13x+41x^2+35x^3-14):(5x-2) 5)(5x^2-3x^3+15-9x):(5-3x) 6)(-4x^2+x^3-20+5x):(x-4)
1: \(\dfrac{2x^3+11x^2+18x-3}{2x+3}\)
\(=\dfrac{2x^3+3x^2+8x^2+12x+6x+9-12}{2x+3}\)
\(=x^2+4x+3-\dfrac{12}{2x+3}\)
tìm x
1) (3x-2)(9x^2+6x+4)-(2x-5)(2x+5)=(3x-1)^3-(2x+3)^2+9x(3x-1)
2) (2x+1)^3-(3x+2)^2=(2x-5)(4x^2+10x+25)+6x(2x+1)-9x^2
Thực hiện phép chia:
a. (-2x^5+3x^2-4x^3):2x^2
b .(x^3-2x^2y+3xy^2):(-1/2x)
c. (3x^2y^2+6x^2y^3-12xy^2):3xy
d. (4x^3-3x^2y+5xy^2):0,5x
e. (18x^3y^5-9x^2y^2+6xy^2):3xy^2
f. (x^4+2x^2y^2+y^4):(x^2+y^2)
sau bạn đăng tách ra cho mn cùng giúp nhé
a, \(\left(-2x^5+3x^2-4x^3\right):2x^2=-x^3+\frac{3}{2}-2x\)
b, \(\left(x^3-2x^2y+3xy^2\right):\left(-\frac{1}{2}x\right)=-\frac{x^2}{2}+xy-\frac{3y^2}{2}\)
c, \(\left(3x^2y^2+6x^3y^3-12xy^2\right):3xy=xy+2x^2y^2-4y\)
d, \(\left(4x^3-3x^2y+5xy^2\right):\frac{1}{2}x=2x^2-\frac{3xy}{2}+\frac{5y^2}{2}\)
e, \(\left(18x^3y^5-9x^2y^2+6xy^2\right):3xy^2=6x^2y^3-3x+2\)
f, \(\left(x^4+2x^2y^2+y^4\right):\left(x^2+y^2\right)=\left(x^2+y^2\right)^2:\left(x^2+y^2\right)=x^2+y^2\)
Tìm x biết:
a.\(\sqrt{18x}+2\sqrt{8x}-3\sqrt{2x}=12\)
b.\(\sqrt{9x+18}+2\sqrt{36x+72}-\sqrt{4x+8}=26\)
c.\(\sqrt{\left(x-2\right)^2}=10\)
d.\(\sqrt{9x^2-6x+1}=15\)
e.\(\sqrt{3x+4}=3x-8\)
c) \(\sqrt{\left(x-2\right)^2}=10\)
\(x-2=10\)
\(x=12\)
d) \(\sqrt{9x^2-6x+1}=15\)
\(\sqrt{\left(3x\right)^2-2.3x.1+1^2}=15\)
\(\sqrt{\left(3x-1\right)^2}=15\)
\(3x-1=15\)
\(3x=16\)
\(x=\dfrac{16}{3}\)
a) \(đk:x\ge0\)
\(pt\Leftrightarrow3\sqrt{2x}+4\sqrt{2x}-3\sqrt{2x}=12\)
\(\Leftrightarrow4\sqrt{2x}=12\Leftrightarrow\sqrt{2x}=3\Leftrightarrow2x=9\Leftrightarrow x=\dfrac{9}{2}\left(tm\right)\)
b) \(đk:x\ge-2\)
\(pt\Leftrightarrow3\sqrt{x+2}+12\sqrt{x+2}-2\sqrt{x+2}=26\)
\(\Leftrightarrow13\sqrt{x+2}=26\)
\(\Leftrightarrow\sqrt{x+2}=2\Leftrightarrow x+2=4\Leftrightarrow x=2\left(tm\right)\)
c) \(pt\Leftrightarrow\left|x-2\right|=10\)
\(\Leftrightarrow\left[{}\begin{matrix}x-2=10\\x-2=-10\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=12\\x=-8\end{matrix}\right.\)
d) \(pt\Leftrightarrow\sqrt{\left(3x-1\right)^2}=15\)
\(\Leftrightarrow\left|3x-1\right|=15\)
\(\Leftrightarrow\left[{}\begin{matrix}3x-1=15\\3x-1=-15\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{16}{3}\\x=-\dfrac{14}{3}\end{matrix}\right.\)
e) \(đk:x\ge\dfrac{8}{3}\)
\(pt\Leftrightarrow3x+4=9x^2-48x+64\)
\(\Leftrightarrow9x^2-51x+60=0\)
\(\Leftrightarrow3\left(x-4\right)\left(5x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=4\left(tm\right)\\x=\dfrac{5}{3}\left(ktm\right)\end{matrix}\right.\)
a. \(\sqrt{18x}+2\sqrt{8x}-3\sqrt{2x}=12\) ĐK: \(x\ge0\)
<=> \(\sqrt{9.2x}+2\sqrt{4.2x}-3\sqrt{2x}=12\)
<=> \(3\sqrt{2x}+4\sqrt{2x}-3\sqrt{2x}=12\)
<=> \(\sqrt{2x}\left(3+4-3\right)=12\)
<=> \(4\sqrt{2x}=12\)
<=> \(\sqrt{2x}=12:4\)
<=> \(\sqrt{2x}=3\)
<=> 2x = 32
<=> 2x = 9
<=> \(x=\dfrac{9}{2}\) (TM)
b. \(\sqrt{9x+18}+2\sqrt{36x+72}-\sqrt{4x+8}=26\) ĐK: \(x\ge-2\)
<=> \(\sqrt{9\left(x+2\right)}+2\sqrt{36\left(x+2\right)}-\sqrt{4\left(x+2\right)}=26\)
<=> \(3\sqrt{x+2}+72\sqrt{x+2}-2\sqrt{x+2}=26\)
<=> \(\sqrt{x+2}\left(3+72-2\right)=26\)
<=> \(73\sqrt{x+2}=26\)
<=> \(\sqrt{x+2}=\dfrac{26}{73}\)
<=> x + 2 = \(\left(\dfrac{26}{73}\right)^2\)
<=> x + 2 = \(\dfrac{676}{5329}\)
<=> \(x=\dfrac{676}{5329}-2\)
<=> \(x=-1,873146932\) (TM)
c. \(\sqrt{\left(x-2\right)^2}=10\)
<=> \(\left|x-2\right|=10\)
<=> \(\left[{}\begin{matrix}x-2=10\left(x\ge2\right)\\x-2=-10\left(x< 2\right)\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=12\left(TM\right)\\x=-8\left(TM\right)\end{matrix}\right.\)
d. \(\sqrt{9x^2-6x+1}=15\)
<=> \(\sqrt{\left(3x-1\right)^2}=15\)
<=> \(\left|3x-1\right|=15\)
<=> \(\left[{}\begin{matrix}3x-1=15\left(x\ge\dfrac{16}{3}\right)\\3x-1=-15\left(x< \dfrac{16}{3}\right)\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\dfrac{16}{3}\left(TM\right)\\x=\dfrac{-14}{3}\left(TM\right)\end{matrix}\right.\)
e. \(\sqrt{3x+4}=3x-8\) ĐK: \(x\ge\dfrac{-4}{3}\)
<=> 3x + 4 = (3x - 8)2
<=> 3x + 4 = 9x2 - 48x + 64
<=> 9x2 - 3x - 48x + 64 - 4 = 0
<=> 9x2 - 51x + 60 = 0
<=> 9x2 - 36x - 15x + 60 = 0
<=> 9x(x - 4) - 15(x - 4) = 0
<=> (9x - 15)(x - 4) = 0
<=> \(\left[{}\begin{matrix}9x-15=0\\x-4=0\end{matrix}\right.\)
<=> \(\left[{}\begin{matrix}x=\dfrac{15}{9}\left(TM\right)\\x=4\left(TM\right)\end{matrix}\right.\)
Tìm x
a) (x + 3)2 + (x + 2)(5 – x) = 1
b/ (2x – 1)2 – ( x – 5)( 4x + 3) = 3
c/ 3x (x – 2) + 4x – 8 = 0
d/ 2x (3x + 5) – 18x – 30 = 0
\(a,\Leftrightarrow x^2+6x+9-x^2+3x+10=1\\ \Leftrightarrow9x=-18\Leftrightarrow x=-2\\ b,\Leftrightarrow4x^2-4x+1-4x^2+17x+15=3\\ \Leftrightarrow13x=-13\Leftrightarrow x=-1\\ c,\Leftrightarrow3x\left(x-2\right)+4\left(x-2\right)=0\\ \Leftrightarrow\left(3x+4\right)\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{4}{3}\\x=2\end{matrix}\right.\\ d,\Leftrightarrow2x\left(3x+5\right)-6\left(3x+5\right)=0\\ \Leftrightarrow\left(x-3\right)\left(3x+5\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{3}\end{matrix}\right.\)
tìm x,y
a) ( 3x-2)^3 - (3x - 2) ( 9x^2 + 6x +4) = 6( 3x+5)(5 - 3x )
b) ( 2x - 1)( 4x^2 - 4x +1) - (2x+ 1)^3+ 3(2x+5)(2x - 5)= -5
bài3 thức hiện phép chia
a) (2x^3-6x^2+5x-1):(x+1)
b) (4x^3-13x^3+18x^2+20x-5):(x^2-4x+2)
c) (6x^3 -2x^2-9x +3): (3x-1)
Phân tích đa thức thành nhân tử ( đa thức bậc cao 1 biến )
a) -9x^2+6x+16
b) 2x^3-3x^2+3x-1
c)27x^3-27x^2+18x-4
d)4x^4y^4+1
e)4x^4+1
f)x^4+3x^2+4
(2x-1)^2-(x-3)(2x+5)
x(2x-5)-3(3x-1)^2.x-3x
(3x-1)^3-(2x-1)(4x^2+4x+1)
(1+3x)(1-3x+9x^2)-(2x-1)^3
2(x-3)(x+3)-x(2x-1)(x-3)
ai giúp mình với khó quá:<
Đề baì là gì ạ ?
Phân tích đa thức \(18x^3-\dfrac{8}{25}x\) thành nhân tử
a. \(\dfrac{2}{25}x\left(9x^2-4\right)=\dfrac{2}{25}x\left(3x-2\right)\left(3x+2\right)\)
b. \(2x\left(9x^2-\dfrac{4}{25}\right)=2x\left(3x-\dfrac{2}{5}\right)\left(3x+\dfrac{2}{5}\right)\)
Cách phân tích nào đúng, a hay b. Giải thích vì sao?