Những câu hỏi liên quan
PJ
Xem chi tiết
LT
3 tháng 1 2018 lúc 17:59

Nếu tồn tại 3 số nguyên a,b,c thõa mãn

abc+a=-625

abc+b=-633

abc+c=-597

Chỉ có 2 số lẻ thì tích mới là 1 số lẻ

Vì a,b,c là số lẻ 

Nên abc cũng là số lẻ

Mà abc+a là chẵn ko thể bằng số -625 ( số lẻ)

      abc+b  ... tương tự như trên

Nên ko tồn tại số nguyên a b c  thõa mãn đk đề bài đã cho

Bình luận (0)
NN
3 tháng 1 2018 lúc 17:59

Giả sử tồn tại các số nguyên a; b; c thỏa mãn:

a.b.c + a = -625   ;     a.b.c + b = -633           và        a.b.c + c = -597

Xét từng điều kiện ta có:

a.b.c + a = a.(b.c + 1) = -625

a.b.c + b = b.(a.c + 1) = -633

a.b.c + c = c.(a.b + 1) = -597

Chỉ có hai số lẻ mới có tích là một số lẻ ⇒ a; b; c đều là số lẻ ⇒ a.b.c cũng là số lẻ.

Khi đó a.b.c + a là số chẵn, không thể bằng -625 (số lẻ)     

Vậy không tồn tại các số nguyên a; b; c thỏa mãn điều kiện đề bài.

Bình luận (0)
DN
Xem chi tiết
DN
27 tháng 11 2017 lúc 14:49

Giải : Xét phép trừ thứ nhất : Ở cột hàng trăm ta có a \(\ge\) c nên phép trừ ở hàng đơn vị và hàng chục có nhớ . Do đó ở cột hàng trăm :

a - c - 1 ( nhớ ) = 0 \(\Rightarrow\) c = a - 1          (1)

Xét phép trừ thứ hai : Ở cột hàng trăm ta có b > a nên phép trừ ở hàng chục có nhớ . Do đó ở cột hàng trăm :

b - a - 1 ( nhớ ) = 2 \(\Rightarrow\) a = b - 3                  (2)

Từ (1) và (2) suy ra : c = b - 4               (3)

Từ (2) và (3) suy ra : 

a + b + c = ( b - 3 ) + b + ( b - 4 ) = 3b - 7 \(\le\) 20.

Số không quá 20 và là tổng của bốn số chẵn liên tiếp có thể bằng :

         0 + 2 + 4 + 6 = 12 hoặc 2 + 4 + 6 + 8 = 20.

Trường hợp 3b - 7 = 12 cho 3b = 19 , loại .

Trường hợp 3b - 7 = 20 cho 3b = 27 nên b = 9.

Từ đó : a = 9 - 3 = 6 ; c = 9 - 4 = 5.

Ta được :

695 - 596 = 99

965 - 695 = 270

Bình luận (0)
VV
Xem chi tiết
DA
Xem chi tiết
DA
13 tháng 2 2016 lúc 15:47

Bạn nào biết câu nào thì giúp mình làm câu ấy nha. 

Bình luận (0)
DD
26 tháng 6 2023 lúc 9:24

âu 1:

Gọi số cần tìm là AB (với A và B là các chữ số). Theo đề bài, ta có phương trình:

AB = 2 × A × B

Để giải phương trình này, ta thực hiện các bước sau:

Ta có A và B đều là các chữ số từ 1 đến 9, do đó AB là một số có hai chữ số từ 10 đến 99. Vì AB = 2 × A × B, nên A và B đều khác 0. Do đó, ta có thể giả sử A > B mà không mất tính tổng quát. Khi đó, ta có A < 5 (nếu A  5 thì AB  50, vượt quá giới hạn của số có hai chữ số). Với mỗi giá trị của A từ 1 đến 4, ta tính được giá trị tương ứng của B bằng cách chia AB cho 2A. Nếu B là một số nguyên từ 1 đến 9 thì ta đã tìm được một giá trị của AB.

Kết quả là AB = 16 hoặc AB = 36.

Vậy có hai số thỏa mãn điều kiện đề bài là 16 và 36.

Câu 2:

Số cần tìm có dạng ABC, với A, B, C lần lượt là chữ số hàng trăm, chục và đơn vị. Theo đề bài, ta có hai điều kiện:

ABC chia hết cho 9. A + C chia hết cho 5.

Để tìm số lớn nhất thỏa mãn hai điều kiện này, ta thực hiện các bước sau:

Vì ABC chia hết cho 9, nên tổng các chữ số của ABC cũng chia hết cho 9. Do đó, ta có A + B + C = 9k (với k là một số nguyên dương). Từ điều kiện thứ hai, ta suy ra A + C là một trong các giá trị 5, 10 hoặc 15. Nếu A + C = 5 thì B = 4 và C = 1. Như vậy, ta có ABC = 401, không chia hết cho 9. Nếu A + C = 10 thì B = 0 và tổng các chữ số của ABC là 10, do đó ABC chia hết cho 9. Ta có ABC = 990. Nếu A + C = 15 thì B = 0 và tổng các chữ số của ABC là 18, do đó ABC chia hết cho 9. Ta có ABC = 999.

Vậy số lớn nhất thỏa mãn điều kiện đề bài là 999.

Câu 3:

A. Giả sử hai số tự nhiên a và b có tổng không chia hết cho 2. Khi đó, a và b có cùng hay khác tính chẵn lẻ. Nếu a và b đều là số lẻ thì tổng của chúng là một số chẵn, mâu thuẫn với giả thiết. Do đó, a và b phải cùng tính chẵn. Khi đó, ta có thể viết a = 2m và b = 2n, với m và n là các số tự nhiên. Từ đó, ta có:

ab = 2m × 2n = 2(m + n)

Vì m + n là một số tự nhiên, nên ab chia hết cho 2.

B. Số 2006 không thể là tích của ba số tự nhiên liên tiếp vì ba số tự nhiên liên tiếp phải có dạng (n - 1), n, (n + 1) hoặc n

Bình luận (0)
BB
Xem chi tiết
LL
Xem chi tiết
HC
Xem chi tiết
HQ
Xem chi tiết
H24
Xem chi tiết