so sánh:\(\left(2^2\right)^3và2^{2^3}\)
Tính và so sánh kết quả:
\(\left[ {\left( { - 3} \right) + 4} \right] + 2\); \(\left( { - 3} \right) + \left( {4 + 2} \right)\)
\(\left[ {\left( { - 3} \right) + 2} \right] + 4\)
\(\begin{array}{l}\left[ {\left( { - 3} \right) + 4} \right] + 2 = \left( {4 - 3} \right) + 2\\ = 1 + 2 = 3\end{array}\)
\(\begin{array}{l}\left( { - 3} \right) + \left( {4 + 2} \right) = \left( { - 3} \right) + 6\\ = 6 - 3 = 3\end{array}\)
\(\begin{array}{l}\left[ {\left( { - 3} \right) + 2} \right] + 4 = - \left( {3 - 2} \right) + 4\\ = - 1 + 4 = 3\end{array}\)
So sánh
a,\(9^{87}và27^{58}\)
b,\(\left(2^2\right)^3và2^{2^3}\)
c,\(2^{3^2}và2^{2^3}\)
d,\(4^{30}và3.24^{10}\)
e,\(2^{101}và5^{39}\)
g,\(101^{15}và9^{29}\)
h,\(404^{600}và505^{450}\)
a) ta có : \(9^{87}=\left(3^2\right)^{87}=3^{174}\) và \(27^{58}=\left(3^3\right)^{58}=3^{174}\)
ta có : \(3^{174}=3^{174}\) \(\Rightarrow9^{87}=27^{58}\)
b) ta có :\(\left(2^2\right)^3=2^6\) và \(2^{2^3}=2^8\)
ta có : \(2^6< 2^8\) \(\Rightarrow\left(2^2\right)^3< 2^{2^3}\)
c) ta có : \(2^{3^2}=2^9\) và \(2^{2^3}=2^8\)
ta có : \(2^9>2^8\) \(\Rightarrow2^{3^2}>2^{2^3}\)
mấy bài sau bn lm tương tự nha
d) Ta có :
\(4^{30}=2^{60}\)
\(3.24^{10}=72^{10}=2^{360}\)
⇒ \(2^{60}< 2^{360}\)
Vậy \(4^{30}< 3.24^{10}\)
Cho biểu thức D = \(\dfrac{\left(2!\right)^2}{1^2}\) + \(\dfrac{\left(2!\right)^2}{3^2}\) + \(\dfrac{\left(2!\right)^2}{5^2}\) + ... + \(\dfrac{\left(2!\right)^2}{2015^2}\)
Tính D rồi so sánh D với 6.
\(D=\dfrac{\left(2!\right)^2}{1^2}+\dfrac{\left(2!\right)^2}{3^2}+\dfrac{\left(2!\right)^2}{5^2}+...+\dfrac{\left(2!\right)^2}{2015^2}\)
\(D=\left(2!\right)^2\left(\dfrac{1}{3^2}+\dfrac{1}{5^2}+...+\dfrac{1}{2015^2}\right)\)
Xét số hạng tổng quát dạng: \(\dfrac{1}{\left(2n+1\right)^2}\) với \(n\in N\ge1\)
Ta có: \(\left(2n+1\right)^2-2n\left(2n+1\right)=1>0\)
\(\Rightarrow\left(2n+1\right)^2>2n\left(2n+1\right)\Rightarrow\dfrac{1}{\left(2n+1\right)^2}< \dfrac{1}{2n\left(2n+1\right)}\)
Do đó: \(\left\{{}\begin{matrix}\dfrac{1}{3^2}< \dfrac{1}{2.4}\\\dfrac{1}{5^2}< \dfrac{1}{4.6}\\....\\\dfrac{1}{2015^2}< \dfrac{1}{2014.2016}\end{matrix}\right.\)
\(\Rightarrow\dfrac{1}{1^2}+\dfrac{1}{3^2}+\dfrac{1}{5^2}...+\dfrac{1}{2015^2}< 1+\dfrac{1}{2.4}+\dfrac{1}{4.6}+...+\dfrac{1}{2014.2016}\)
\(\Leftrightarrow\dfrac{D}{\left(2!\right)^2}< 1+\dfrac{1}{2.4}+\dfrac{1}{4.6}+..+\dfrac{1}{2014.2016}\)
\(\Leftrightarrow D< 4\left(1+\dfrac{1}{2.4}+\dfrac{1}{4.6}+...+\dfrac{1}{2014.2016}\right)\)
\(\Leftrightarrow D< 4+\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{1007.1008}\)
\(\Leftrightarrow D< 4+\dfrac{2-1}{1.2}+\dfrac{3-2}{2.3}+...+\dfrac{1008-1007}{1007.1008}\)
\(\Leftrightarrow D< 4+1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{...1}{1007}-\dfrac{1}{1008}\)
\(\Leftrightarrow D< 5-\dfrac{1}{1008}< 5< 6\)
So sánh các số :
\(\left(\frac{1}{2}\right)^1;\left(\frac{1}{3}\right)^{-1};\left(\frac{1}{2}\right)^2;\left(\frac{1}{4}\right)^{-1};\left(\frac{1}{3}\right)^{-2}\)
Cho mk sửa xíu : ( 1/2)^-1 ; (1/2)^-2
(1/2)^-1=2
(1/2)^-2=4
có 2<4
=>(1/2)^-1<(1/2)^-2
Ta có :
\(\left(\frac{1}{2}\right)^{-1}=\left(2^{-1}\right)^{-1}=2\)
\(\left(\frac{1}{3}\right)^{-1}=3\)
\(\left(\frac{1}{2}\right)^{-2}=\left(2^{-1}\right)^{-2}=2^2=4\)
\(\left(\frac{1}{4}\right)^{-1}=\left(4^{-1}\right)^{-1}=4\)
\(\left(\frac{1}{3}\right)^{-2}=\left(3^{-1}\right)^{-2}=3^2=9\)
Do đó ta có :
\(\left(\frac{1}{2}\right)^{-1}< \left(\frac{1}{3}\right)^{-1}< \left(\frac{1}{2}\right)^{-2}=\left(\frac{1}{4}\right)^{-1}< \left(\frac{1}{3}\right)^{-2}\)
Tính: \(B=\left(1-\dfrac{1}{2^2}\right).\left(1-\dfrac{1}{3^2}\right).\left(1-\dfrac{1}{4^2}\right)...\left(1-\dfrac{1}{100^2}\right)\) rồi so sánh với \(\dfrac{1}{2}\)
\(B=\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)...\left(1-\dfrac{1}{100^2}\right)\)
\(B=\left(\dfrac{2^2}{2^2}-\dfrac{1}{2^2}\right)\cdot\left(\dfrac{3^2}{3^2}-\dfrac{1}{3^2}\right)....\left(\dfrac{100^2}{100^2}-\dfrac{1}{100^2}\right)\)
\(B=\dfrac{2^2-1}{2^2}\cdot\dfrac{3^2-1}{3^2}....\cdot\dfrac{100^2-1}{100^2}\)
\(B=\dfrac{\left(2+1\right)\left(2-1\right)}{2^2}\cdot\dfrac{\left(3+1\right)\left(3-1\right)}{3^2}\cdot...\cdot\dfrac{\left(100+1\right)\left(100-1\right)}{100^2}\)
\(B=\dfrac{1\cdot3}{2^2}\cdot\dfrac{2\cdot4}{3^2}\cdot\dfrac{3\cdot5}{4^2}\cdot...\cdot\dfrac{99\cdot101}{100^2}\)
\(B=\dfrac{1\cdot2\cdot3\cdot4\cdot5\cdot...\cdot101}{2^2\cdot3^2\cdot4^2\cdot5^2\cdot....\cdot100^2}\)
\(B=\dfrac{1\cdot101}{2\cdot3\cdot4\cdot5\cdot...\cdot100}\)
\(B=\dfrac{101}{2\cdot3\cdot4\cdot5\cdot...\cdot100}\)
Mà: \(\dfrac{1}{2}=\dfrac{3\cdot4\cdot5\cdot...\cdot100}{2\cdot3\cdot4\cdot...\cdot100}\)
Ta có: \(101< 3\cdot4\cdot5\cdot...\cdot100\)
\(\Rightarrow\dfrac{101}{2\cdot3\cdot4\cdot5\cdot...\cdot100}< \dfrac{3\cdot4\cdot5\cdot...\cdot100}{2\cdot3\cdot4\cdot...\cdot100}\)
\(\Rightarrow B< \dfrac{1}{2}\)
\(D=\frac{\left(2!\right)^2}{1^2}+\frac{\left(2!\right)^2}{3^2}+\frac{\left(2!\right)^2}{5^2}+\frac{\left(2!\right)^2}{7^2}+...+\frac{\left(2!\right)^2}{2015^2}\) so sánh D với 6
\(D=\frac{\left(2!\right)^2}{1^2}+\frac{\left(2!\right)^2}{3^2}+\frac{\left(2!\right)^2}{5^2}+\frac{\left(2!\right)^2}{7^2}+...+\frac{\left(2!\right)^2}{2015^2}\) so sánh D với 6
\(D=2!^2\left(\frac{1}{1^2}+\frac{1}{3^2}+\frac{1}{5^2}+...+\frac{1}{2015^2}\right)\)
tổng trong ngoặc nhỏ hơn 1 nên D nhỏ hơn 4.1=4<6
Vậy Đ<6
Cho \(B=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\left(\dfrac{1}{4^2}-1\right)...\left(\dfrac{1}{2020^2}-1\right).\) So sánh B và\(\dfrac{1}{2}\)
HELP ME!
\(B=\left(\dfrac{1}{2^2}-1\right)\left(\dfrac{1}{3^2}-1\right)\left(\dfrac{1}{4^2}-1\right)...\left(\dfrac{1}{2020^2}-1\right)\)
\(B=\left(\dfrac{1}{2^2}-\dfrac{2^2}{2^2}\right)\left(\dfrac{1}{3^2}-\dfrac{3^2}{3^2}\right)....\left(\dfrac{1}{2020^2}-\dfrac{2020^2}{2020^2}\right)\)
\(B=\left(\dfrac{1-2^2}{2^2}\right)\left(\dfrac{1-3^2}{3^2}\right)...\left(\dfrac{1-2020^2}{2020^2}\right)\)
\(B=\dfrac{\left(1-2\right)\left(1+2\right)}{2^2}\cdot\dfrac{\left(1-3\right)\left(1+3\right)}{3^2}....\cdot\dfrac{\left(2020-1\right)\left(2020+1\right)}{2020^2}\)
\(B=\dfrac{-1\cdot3}{2^2}\cdot\dfrac{-2\cdot4}{3^2}\cdot\dfrac{-3\cdot5}{4^2}\cdot....\cdot\dfrac{-2019\cdot2021}{2020}\)
\(B=\dfrac{-1\cdot-2\cdot-3\cdot...\cdot-2019}{2\cdot3\cdot4\cdot....\cdot2020}\)
\(B=\dfrac{-1\cdot-1\cdot-1\cdot....\cdot-1}{1}\)
\(B=-1\) (2019 số -1)
Mà: \(-1< \dfrac{1}{2}\)
\(\Rightarrow B< \dfrac{1}{2}\)
\(\dfrac{1}{2^2}\); \(\dfrac{1}{3^2}\);...;\(\dfrac{1}{2020^2}\) < 1 ⇒ 0 > \(\dfrac{1}{2^2}\) - 1 > \(\dfrac{1}{3^2}\) - 1 >..> \(\dfrac{1}{2020^2}\) - 1
Xét dãy số 2; 3; 4;...; 2020 dãy số này có số số hạng là:
(2020 - 2):1 + 1 = 2019 (số hạng)
Vậy B là tích của 2019 số âm nên B < 0 ⇒ B < \(\dfrac{1}{2}\)
so sánh A=\(\left[\left(3^5\right)^2\right]^5\)với B=\(\left[\left(5^2\right)^5\right]^2\)
So sánh: M=\(\frac{\left(2^3+1\right)\left(3^3+1\right)...\left(100^3+1\right)}{\left(2^3-1\right)\left(3^3-1\right)...\left(100^3-1\right)}\) với N=\(\frac{3}{2}\)