\(\left(2x-3\right)^2=16\)
Tìm x biết \(\left|5\left(2x+3\right)\right|+\left|2\left(2x+3\right)\right|+\left|2x+3\right|=16\)
NX: 2x+3; 5(2x+3) và 2(2x+3) cùng dấu
+TH1: 2x+3 \(\ge\)0 => x \(\ge\frac{-3}{2}\)
=> 5(2x+3), 2(2x+3) \(\ge\)0
=> |5(2x+3)| = 5(2x+3); |2(2x+3)| = 2(2x+3); |2x+3| = 2x+3
=> (2x+3)(5+2+1) = 16
=> 2x+3 = 2
=> 2x = -1
=> x = -1/2 (t/m)
+ TH2: 2x+3 < 0 => x < -3/2
cmtt => -5(2x+3) - 2(2x+3) - (2x+3) = 16
=> (2x+3)(-5-2-1) = 16
=> 2x+3 = -2
=> 2x = -5
=> x = -5/2 (t/m)
/8(2x+3/ = 16
/2x+3/=2
2x+3=2 hoặc 2x+3=-2
2x=-1 hoặc 2x=-5
x=-1/2 hoặc x=-5/2
bạn trả lời nhé
Tìm x, biết :
a, \(\left(3x+2\right).\left(6x-2\right)-\left(9x-2\right).\left(2x+1\right)=24\)
b, \(\left(4x+3\right)\left(3x-2\right)-\left(6x-1\right)\left(2x+3\right)=16\)
c, \(\left(5x-2\right)\left(4x+5\right)+\left(10x-7\right)\left(5-2x\right)=12\)
d, \(6x\left(3-4x\right)+8x\left(3x-2\right)=16\)
giải các phương trình sau
\(\left(3x-1\right)\left(2x+7\right)-\left(x+1\right)\left(6x-5\right)=\)16
\(\left(2x+3\right)^2-2\left(2x+3\right)\left(2x-5\right)+\left(2x-5\right)^2=x^2+6x+64\)
\(\left(x^4+2x^3+10x-25\right):\left(x^2+5\right)=3\)
Giải phương trình:
\(a,\left|-5x\right|=3x-16\)
\(b,\left|2x+1\right|=\left|x-1\right|\)
\(c,\left|2x+1\right|-\left|5x-2\right|=3\)
a,\(\left|-5x\right|\)=3x-16
\(\Leftrightarrow\)\(\left[{}\begin{matrix}-5x=3x-16\\-5x=-3x+16\end{matrix}\right.\) \(\Leftrightarrow\)\(\left[{}\begin{matrix}-8x=-16\\-2x=16\end{matrix}\right.\) \(\left[{}\begin{matrix}x=2\\x=-8\end{matrix}\right.\)
Tìm x biết
\(\left|5\left(2x+3\right)\right|\) +\(\left|2\left(2x+3\right)\right|\) + \(\left|2x+3\right|\) = 16
Ta có: \(\left|5\left(2x+3\right)\right|+\left|2\left(2x+3\right)\right|+\left|2x+ 3\right|=16\)
\(\Rightarrow5\left|2x+3\right|+2\left|2x+3\right|+\left|2x+3\right|=16\)
\(\Rightarrow\left|2x+3\right|\left(5+2+1\right)=16\)
\(\Rightarrow\left|2x+3\right|.8=16\)
\(\Rightarrow\left|2x+3\right|=2\)
\(\Rightarrow\left[{}\begin{matrix}2x+3=2\\2x+3=-2\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}2x=-1\\2x=-5\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=\dfrac{-5}{2}\end{matrix}\right.\)
Vậy \(\left[{}\begin{matrix}x=\dfrac{-1}{2}\\x=\dfrac{-5}{2}\end{matrix}\right.\).
Giai hptr : \(\left\{{}\begin{matrix}\left(2y-3\right)\left(3x-4\right)=\left(3y+1\right)\left(2x-5\right)\\2\left(y-3\right)+16=3\left(x+2\right)\end{matrix}\right.\)
=>6xy-8y-9x+12=6xy-15y+2x-5 và 2y-6+16=3x+6
=>-9x-8y+12+15y-2x+5=0 và 3x+6-2y-10=0
=>-11x+7y=-17 và 3x-2y=4
=>x=6 và y=7
Tìm x sao cho: \(\left(x-2\right)^3+\left(2x+1\right)^3-9\left(x+1\right)^3=-16\)
\(\left(x-1\right)^3+\left(2-x\right).\left(4x+2x+x^2\right)+3.\left(x+2\right)=16\)
\(\left(x-1\right)^3+\left(2-x\right)\left(4x+2x+x^2\right)+3\left(x+2\right)=16\)
\(\Leftrightarrow-7x^2+18x+5=16\)
\(\Leftrightarrow-7x+18x+5=16-16\)
\(\Leftrightarrow-7x^2+18x-11=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{11}{7}\end{cases}}\)
Vậy:...
Tìm x biết :
\(a)\)\(\left|5\left(2x+3\right)\right|+\left|2\left(2x+3\right)\right|+\left|2x+3\right|=16\)
\(b)\)\(\left|x^2+\left|6x-2\right|\right|=x^2+4\)
\(\left(x+4\right)^2-\left(x+1\right)\left(x-1\right)=16\)
\(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
\(\left(x+2\right)\left(x^2-2x+4\right)-x\left(x^2+2\right)=15\)\(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)
a, \(\left(x+4\right)^2-\left(x+1\right)\left(x-1\right)=16\)
\(\Leftrightarrow x^2+8x+16-\left(x^2-x+x-1\right)=16\)
\(\Leftrightarrow8x+1=0\Leftrightarrow x=-\frac{1}{8}\)
b, \(\left(2x-1\right)^2+\left(x+3\right)^2-5\left(x+7\right)\left(x-7\right)=0\)
\(\Leftrightarrow4x^2-4x+1+x^2+6x+9-5\left(x^2-49\right)=0\)
\(\Leftrightarrow2x+255=0\Leftrightarrow x=-\frac{225}{2}\)
c, \(\left(x+2\right)\left(x-2\right)-x^3-2x=15\)
\(\Leftrightarrow x^2-4-x^3-2x=15\)( vô nghiệm )
d, \(\left(x+3\right)^3-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)=28\)
\(\Leftrightarrow x^3+9x^2+27x+27-9x^3+6x^2-x+8x^3+1=28\)
\(\Leftrightarrow15x^2+26=0\Leftrightarrow x^2\ne-\frac{26}{15}\)( vô nghiệm )
Tính nhẩm hết á, sai bỏ quá nhá, sắp đi hc ... nên chất lượng hơi kém xíu ~~~
a) ( x + 4 )2 - ( x + 1 )( x - 1 ) = 16
<=> x2 + 8x + 16 - ( x2 - 1 ) = 16
<=> x2 + 8x + 16 - x2 + 1 = 16
<=> 8x + 17 = 16
<=> 8x = -1
<=> x = -1/8
b) ( 2x - 1 )2 + ( x + 3 )2 - 5( x + 7 )( x - 7 ) = 0
<=> 4x2 - 4x + 1 + x2 + 6x + 9 - 5( x2 - 49 ) = 0
<=> 5x2 + 2x + 10 - 5x2 + 245 = 0
<=> 2x + 255 = 0
<=> 2x = -255
<=> 2x = -255/2
c) ( x + 2 )( x2 - 2x + 4 ) - x( x2 + 2 ) = 15
<=> x3 + 23 - x3 - 2x = 15
<=> 8 - 2x = 15
<=> 2x = -7
<=> x = -7/2
d) ( x + 3 )3 - x( 3x + 1 )2 + ( 2x + 1 )( 4x2 - 2x + 1 ) = 28
<=> x3 + 9x2 + 27x + 27 - x( 9x2 + 6x + 1 ) + [ ( 2x )3 + 13 ] = 28
<=> x3 + 9x2 + 27x + 27 - 9x3 - 6x2 - x + 8x3 + 1 = 28
<=> 3x2 + 26x + 28 = 28
<=> 3x2 + 26x = 0
<=> x( 3x + 26 ) = 0
<=> \(\orbr{\begin{cases}x=0\\3x+26=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=0\\x=-\frac{26}{3}\end{cases}}\)