Những câu hỏi liên quan
PA
Xem chi tiết
NU
Xem chi tiết
DL
Xem chi tiết
FF
28 tháng 8 2016 lúc 16:07

3. abc > 0 nên trog 3 số phải có ít nhất 1 số dương. 
Vì nếu giả sử cả 3 số đều âm => abc < 0 => trái giả thiết 
Vậy nên phải có ít nhất 1 số dương 

Không mất tính tổng quát, giả sử a > 0 
mà abc > 0 => bc > 0 
Nếu b < 0, c < 0: 
=> b + c < 0 
Từ gt: a + b + c < 0 
=> b + c > - a 
=> (b + c)^2 < -a(b + c) (vì b + c < 0) 
<=> b^2 + 2bc + c^2 < -ab - ac 
<=> ab + bc + ca < -b^2 - bc - c^2 
<=> ab + bc + ca < - (b^2 + bc + c^2) 
ta có: 
b^2 + c^2 >= 0 
mà bc > 0 => b^2 + bc + c^2 > 0 
=> - (b^2 + bc + c^2) < 0 
=> ab + bc + ca < 0 (vô lý) 
trái gt: ab + bc + ca > 0 

Vậy b > 0 và c >0 
=> cả 3 số a, b, c > 0

Bình luận (0)
H24
3 tháng 5 2019 lúc 15:01

1.a, Ta có: \(\left(a+b\right)^2\ge4a>0\)

                   \(\left(b+c\right)^2\ge4b>0\)

                    \(\left(a+c\right)^2\ge4c>0\)

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64abc\)

Mà abc=1

\(\Rightarrow\left[\left(a+b\right)\left(b+c\right)\left(a+c\right)\right]^2\ge64\)

\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)\ge8\left(đpcm\right)\)     

Bình luận (0)
H24
3 tháng 5 2019 lúc 15:06

sai rồi. sửa a+b=a+1, b+c=b+1, a+c=c+1 nha, thông cảm, nhìn sai đề

Bình luận (0)
NL
Xem chi tiết
CD
1 tháng 12 2017 lúc 21:28

Gỉa sử a chia hết cho 5

ta có ab(a+b)= a.a.b+a.b.b

vì a chia hết cho 5 nên a.a.b và a.b.b chia hết cho 5

=>a.a.b và a.b.b có tận cùng là 5 =>:a.a.b+a.b.b có tận cùng là 0 

=>ab(a+b) có tận cùng là 0

Bình luận (0)
NA
Xem chi tiết
TH
Xem chi tiết
LK
30 tháng 7 2016 lúc 14:20

Trường hợp số chia hết cho 5 tận cùng là 0, thì ab(a+b)  chắc chắn tận cùng là 0.

Trường hợp số chia hết cho 5 tận cùng là 5 cũng có nghĩa số đó là số lẻ, nếu một số tận cùng là 5 thì khi nhân với một số chẵn thì nó chia hết cho 10(tận cùng là  0)

Trong trường hợp này nếu số còn lại là số chẵn thì tích của nó với số chia hết cho 5 chia hết cho 10, nếu đó là số lẽ thì tổng của nó với 5 là số chẵn lúc đó tích của nó với 5 cũng sẽ chia hết cho 10.

Vậy.... 

Bình luận (0)
DA
Xem chi tiết
H24
31 tháng 7 2021 lúc 17:16

a) a và b là 2 số tự nhiên ⇒ a, b ≥ 0

nếu a>0, b>0 ⇒a+b>0

nếu a>0, b=0 ⇒a+b>0

nếu a=0, b>0 ⇒a+b>0

nếu a=0, b=0 ⇒a+b=0

⇒ a+b=0 khi và chỉ khi a = b = 0

b) a và b là 2 số tự nhiên ⇒ a, b ≥ 0

nếu a>0, b>0 ⇒ ab>0

nếu a=0, b>0 ⇒ ab=0

nếu a>0, b=0 ⇒ ab=0

Vậy ab = 0 khi và chỉ khi a = 0 hoặc b = 0

Bình luận (1)
NT
31 tháng 7 2021 lúc 22:02

a) Vì a,b là hai số tự nhiên nên \(a+b\ge0\)

Dấu '=' xảy ra khi a=b=0

b) Vì a,b là hai số tự nhiên nên \(ab\ge0\)

Dấu '=' xảy ra khi a=0 hoặc b=0

Bình luận (0)
SL
Xem chi tiết
TH
31 tháng 12 2015 lúc 15:38

Bài này giải bằng quy nạp

Mình ko có thời gian nên nói cách làm thôi

Bình luận (0)
PH
Xem chi tiết
DL
5 tháng 7 2016 lúc 18:28

Đặt tích: \(\left(16a+17b\right)\left(17a+16b\right)=P\)

\(P=\left[11\left(2a+b\right)-6\left(a-b\right)\right]\cdot\left[11\left(2a+b\right)-5\left(a-b\right)\right]\)

P chia hết cho 11 thì

Hoặc thừa số thứ nhất \(\left[11\left(2a+b\right)-6\left(a-b\right)\right]\) chia hết cho 11 => (a - b) chia hết cho 11 => Thừa số thứ 2: \(\left[11\left(2a+b\right)-5\left(a-b\right)\right]\)cũng chia hết cho 11. Do đó P chia hết cho 112.Và ngược lại, Thừa số thứ 2 chia hết cho 11 ta cũng suy được thừa số thứ 1 cũng chia hết cho 11 và P cũng chia hết cho 112.

Vậy, P luôn có ít nhất 1 ước chính phương (khác 1) là 112. ĐPCM

Bình luận (0)