Những câu hỏi liên quan
NH
Xem chi tiết
HT
29 tháng 11 2015 lúc 15:28

sao ma kho du day ban..minh bo tay bo chan lun oy oy oy

xin loi minh khong the giup ban duoc

Bình luận (0)
CU
29 tháng 11 2015 lúc 15:31

mk chưa hok tới lớp 8 

Bình luận (0)
LC
Xem chi tiết
TD
Xem chi tiết
NL
29 tháng 11 2021 lúc 13:09

M=a^3+b^3+c^3-3abc/(a-b)^3+(b-c)^3+(c-a)^3

Bình luận (0)
NL
29 tháng 11 2021 lúc 13:09

nè ban

Bình luận (0)
NB
Xem chi tiết
VT
21 tháng 10 2016 lúc 9:55

- Phân tích ra nhân tử :

\(a^3+b^3+c^3-3abc=a^3+b^3+c^3+3a^2b-3ab^2+3ab^2-3ab^2-3abc\)\(=a^3+3a^2b+3ab^2+b^3+c^3-3ab\left(a+b+c\right)\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\right]\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\)

Từ đây ta có \(A=\frac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)}{a^2+b^2+c^2-ab-bc-ac}\)

\(\Rightarrow A=a+b+c\)

 

 

 

 

Bình luận (0)
YV
Xem chi tiết
NA
28 tháng 11 2017 lúc 17:31

phân tích tử thức: 

\(a^3+b^3+c^3-3abc=\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

Phân tích mẫu thức:\(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=3\left(ab^2-a^2b+bc^2-b^2c+ca^2-c^2a\right)\)

\(=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

\(\Rightarrow A=\frac{3\left(a^2+b^2+c^2-ab-bc-ca\right)}{3\left(a-b\right)\left(b-c\right)\left(c-a\right)}=\frac{a^2+b^2+c^2-ab-bc-ca}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

Bình luận (0)
NT
28 tháng 11 2017 lúc 17:32

a 3 + b 3 + c 3 = 3abc⇔a 3 + b 3 + c 3 − 3abc = 0

⇔ a + b 3 − 3ab a + b + c 3 − 3abc = 0

⇔ a + b 3 + c 3 − 3ab a + b + 3abc = 0

⇔ a + b + c a 2 + b 2 + c 2 + 2ab − ac − bc − 3ab a + b + c = 0

⇔ a + b + c a 2 + b 2 + c 2 − ab − bc − ac = 0

⇔ 2 a + b + c a − b 2 + b − c 2 + c − a /2 = 0

Vì a,b,c > 0 nên a+b+c > 0

Do đó : a − b 2 = 0

             b − c 2 = 0 

             c − a 2 = 0

⇒a = b = c

k cho mk nha

Bình luận (0)
BH
28 tháng 11 2017 lúc 17:56

\(A=\frac{a^3+b^3+c^3-3abc}{\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3}.\)

Áp dụng: (a+b+c)3=a3+b3+c3+3(a+b)(b+c)(c+a) => a3+b3+c3=(a+b+c)3-3(a+b)(b+c)(c+a)=27-3(a+b)(b+c)(c+a)

=> \(A=\frac{27-3\left(a+b\right)\left(b+c\right)\left(c+a\right)-3abc}{a^3-3a^2b+3ab^2-b^3+b^3-3b^2c+3bc^2-c^3+c^3-3c^2a+3ca^2-a^3}.\)

\(A=\frac{27-3\left(a+b\right)\left(b+c\right)\left(c+a\right)-3abc}{-3a^2b+3ab^2-3b^2c+3bc^2-3c^2a+3ca^2}\)=> \(A=\frac{9-\left(a+b\right)\left(b+c\right)\left(c+a\right)-abc}{-a^2b+ab^2-b^2c+bc^2-c^2a+ca^2}\)

Ta có: (a+b)(b+c)(c+a)=(3-c)(3-b)(3-a)=27-9a-9b-9c+3ab+3ac+3bc-abc=27-9(a+b+c)+3(ab+bc+ca)-abc=3(ab+bc+ca)-abc

Và: -a2b+ab2-b2c+bc2-c2a+ca2=(a-b)(b-c)(c-a)

=> \(A=\frac{9-3\left(ab+bc+ca\right)+abc-abc}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)\(A=\frac{9-3\left(ab+bc+ca\right)}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

Bình luận (0)
NP
Xem chi tiết
NN
2 tháng 11 2016 lúc 20:15

Ta có:

\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

\(\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=3\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

Thay vào thì kết quả là \(\frac{a^2+b^2+c^2-ab-ac-cb}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)

P/s: Bạn xem lại đề nhé.... tớ cũng từng làm bài này nhưng đề ở phần mẫu số là bình phương nên tớ không làm rõ chứ không lại mất công.

 

Bình luận (0)
MD
Xem chi tiết
KB
Xem chi tiết
TM
4 tháng 12 2017 lúc 23:21

a^3+b^3+c^3-3abc

<=>(a+b)^3 -3ab(a+b) +c^3 - 3abc
<=>[(a+b)^3 +c^3] -3ab.(a+b+c)

<=>(a+b+c). [(a+b)^2 -c.(a+b)+c^2] -3ab(a+b+c)

<=>(a+b+c).(a^2+2ab+b^2-ca-cb+c^2-3ab)... 

<=>(a+b+c).(a^2+b^2+c^2-ab-bc-ca)

thay vào và rút gọn ta được:\(a+b+c\)

Bình luận (0)
NP
Xem chi tiết
NT
5 tháng 2 2022 lúc 23:52

phân thức sao không có phần mẫu và tử vậy bạn?

Bình luận (0)