Tìm GTLN,GTNN của các biểu thức sau:
A=X² - 4X +1
B=4X-X²+z
C={eq \f(2X+1,X²)} với X khác 0
Bài 5: Tìm GTNN của các biểu thức sau:
a) A = x^2 – 4x + 9
b) B = x^2 – x + 1
c) C = 2x^2 – 6x
Bài 4: Tìm GTLN của các đa thức:
a) M = 4x – x^2 + 3
b) N = x – x^2
c) P = 2x – 2x^2 – 5
Bài 5:
a) \(A=x^2-4x+9=\left(x^2-4x+4\right)+5=\left(x-2\right)^2+5\ge5\)
\(minA=5\Leftrightarrow x=2\)
b) \(B=x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
\(minB=\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}\)
c) \(C=2x^2-6x=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)
\(minC=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\)
Bài 4:
a) \(M=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)
\(maxM=7\Leftrightarrow x=2\)
b) \(N=x-x^2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)
\(maxN=\dfrac{1}{4}\Leftrightarrow x=\dfrac{1}{2}\)
c) \(P=2x-2x^2-5=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{9}{2}=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le-\dfrac{9}{2}\)
\(maxP=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{1}{2}\)
Tìm GTLN của các biểu thức sau:
a) A= -4x^2+4x-1
b) B= -x^2+5x
c) C= -3x^2-9x+6
a: \(A=-4x^2+4x-1\)
\(=-\left(4x^2-4x+1\right)\)
\(=-\left(2x-1\right)^2\le0\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)
b: \(B=-x^2+5x\)
\(=-\left(x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}\right)+\dfrac{25}{4}\)
\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
a) \(A=-4x^2+4x-1=-\left(4x^2-4x+1\right)\)
\(=-\left(2x-1\right)^2\le0\)
\(maxA=0\Leftrightarrow x=\dfrac{1}{2}\)
b) \(B=-x^2+5x=-\left(x^2-5x+\dfrac{25}{4}\right)+\dfrac{25}{4}\)
\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{25}{4}\le\dfrac{25}{4}\)
\(maxB=\dfrac{25}{4}\Leftrightarrow x=\dfrac{5}{2}\)
c) \(C=-3x^2-9x+6=-3\left(x^2+3x+\dfrac{9}{4}\right)+\dfrac{51}{4}\)
\(=-3\left(x+\dfrac{3}{2}\right)^2+\dfrac{51}{4}\le\dfrac{51}{4}\)
\(maxC=\dfrac{51}{4}\Leftrightarrow x=-\dfrac{3}{2}\)
Tìm GTNN ( hoặc GTLN ) của biểu thức
A = x^2-4x+1
B = 2x^2-x+1
C = x^2-x+1
D = -x^2+x-3
E = -x^2+2x-2
F = -3x^2+x-2
\(A=x^2-4x+1\)
\(A=x^2-4x+4-3\)
\(A=\left(x-2\right)^2-3\)
Min A = -3
Min A xảy ra khi (x-2)2=0
x-2=0
x=2
A đến C là tìm GTNN
\(A=x^2-4x+1=\left(x-2\right)^2-3\ge-3\)
Dấu "=" xảy ra ⇔ x=2
\(B=2x^2-x+1=2\left(x^2-2.\dfrac{1}{4}x+\dfrac{1}{16}\right)+\dfrac{7}{8}=2\left(x-\dfrac{1}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{4}\)
\(C=x^2-x+1=\left(x^2-2.\dfrac{1}{2}x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\)
D đến F là tìm GTLN
\(E=-x^2+2x-2=-\left(x^2-2x+1\right)-1=-\left(x-1\right)^2-1\le-1\)
Do (x-1)2≥0 ⇔-(x-1)2≤0 ⇔ D≤-1
Dấu "=" xảy ra ⇔ x=1
\(D=-x^2+x-3=-\left(x^2-2.\dfrac{1}{2}+\dfrac{1}{4}\right)-\dfrac{11}{4}=-\left(x-\dfrac{1}{2}\right)^2-\dfrac{11}{4}\le-\dfrac{11}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\)
\(F=-3x^2+x-2=-3\left(x^2-2.\dfrac{1}{6}+\dfrac{1}{36}\right)-\dfrac{23}{12}=-3\left(x-\dfrac{1}{6}\right)-\dfrac{23}{12}\le-\dfrac{23}{12}\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{6}\)
Tìm GTNN ( hoặc GTLN ) của biểu thức
A = x^2-4x+1
B = 2x^2-x+1
C = x^2-x+1
D = -x^2+x-3
E = -x^2+2x-2
F = -3x^2+x-2
mong mn giúp ạ
\(A=x^2-4x+1=\left(x^2-4x+4\right)-3=\left(x-2\right)^2-3\ge-3\)
Vậy \(A_{Min}=-3khix=2\)
Tìm GTNN, GTLN của biểu thức sau:
A=\(\dfrac{4x+3}{x^2+1}\)
\(A=\dfrac{4x+3}{x^2+1}\Leftrightarrow Ax^2+A=4x+3\\ \Leftrightarrow Ax^2-4x+A-3=0\)
Coi đây là PT bậc 2 ẩn x thì PT có nghiệm
\(\Leftrightarrow\Delta=16-4A\left(A-3\right)\ge0\\ \Leftrightarrow16-4A^2+12A\ge0\\ \Leftrightarrow-A^2+3A+4\ge0\\ \Leftrightarrow-1\le A\le4\)
Vậy \(A_{max}=4;A_{min}=-1\)
\(A_{max}=4\Leftrightarrow\dfrac{4x+3}{x^2+1}=4\Leftrightarrow4x^2-4x+1=0\\ \Leftrightarrow\left(2x-1\right)^2=0\Leftrightarrow x=\dfrac{1}{2}\\ A_{min}=-1\Leftrightarrow\dfrac{4x+3}{x^2+1}=-1\Leftrightarrow x^2+1=-4x-3\Leftrightarrow x^2+4x+4=0\\ \Leftrightarrow\left(x+2\right)^2=0\Leftrightarrow x=-2\)
Bài 6:Tìm GTLN,GTNN (nếu có) trong các biểu thức sau:
a)A=-4-x^2+6x
b)B=3x^2-5x+7
c)C=/x-3/(2-/x-3/)
d)D=(x-1)(x+5)(x^2+4x+5)
e)E=-x^2-4x-y^2+2y
a: =-x^2+6x-4
=-(x^2-6x+4)
=-(x^2-6x+9-5)
=-(x-3)^2+5<=5
Dấu = xảy ra khi x=3
b: =3(x^2-5/3x+7/3)
=3(x^2-2*x*5/6+25/36+59/36)
=3(x-5/6)^2+59/12>=59/12
Dấu = xảy ra khi x=5/6
c: \(=-\left(x-3\right)^2+2\left|x-3\right|\)
\(=-\left[\left(\left|x-3\right|\right)^2-2\left|x-3\right|+1-1\right]\)
\(=-\left(\left|x-3\right|-1\right)^2+1< =1\)
Dấu = xảy ra khi x=4 hoặc x=2
Tìm GTNN hoặc GTLN của các biểu thức sau:
a) 2x2 - x + 1
b) 5x - x2 + 4
c) x2 + 5y2 - 2xy + 4y + 3
a) \(2x^2-x+1=2\left(x-\dfrac{1}{4}\right)^2+\dfrac{7}{8}\ge\dfrac{7}{8}\)
\(ĐTXR\Leftrightarrow x=\dfrac{1}{4}\)
b) \(5x-x^2+4=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{41}{4}\le\dfrac{41}{4}\)
\(ĐTXR\Leftrightarrow x=\dfrac{5}{2}\)
c) \(x^2+5y^2-2xy+4y+3=\left(x-y\right)^2+\left(2y+1\right)^2+2\ge2\)
\(ĐTXR\Leftrightarrow\)\(x=y=-\dfrac{1}{2}\)
b: ta có: \(-x^2+5x+4\)
\(=-\left(x^2-5x-4\right)\)
\(=-\left(x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}-\dfrac{41}{4}\right)\)
\(=-\left(x-\dfrac{5}{2}\right)^2+\dfrac{41}{4}\le\dfrac{41}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
Tìm GTNN của các bt sau
C=(2x+5)(5x+14) tất cả trên 2 với x >0
D=(x2/1+4x)
E=x2-2X+1994 tất cả trên x2 với x khác 0
Tìm GTNN,GTLN của
P=4x+3 tất cả trên x2+1
a) A = (2x + 1)/(x² + 2)
Tìm min
ta có: A = (2x + 1)/(x² + 2)
=> 2A = (4x + 2)/(x² + 2)
= (4x + 2 + x² - x² + 2 - 2)/(x² + 2)
= [ (x² + 4x + 4) + (-x² - 2) ]/(x² + 2)
= [ (x + 2)² - (x² + 2) ]/(x² + 2)
= (x + 2)²/(x² + 2) - (x² + 2)/(x² + 2)
= (x + 2)²/(x² + 2) - 1
Ta có: (x + 2)² ≥ 0 và (x² + 2) > 0
=> (x + 2)²/(x² + 2) ≥ 0
=> (x + 2)²/(x² + 2) - 1 ≥ -1
=> 2A ≥ -1
=> A ≥ -1/2
Dấu bằng xảy ra <=> (x + 2)²/(x² + 2) = 0
<=> (x + 2)² = 0
<=> x + 2 = 0
<=> x = -2
Tìm max: A = (2x + 1)/(x² + 2)
= (2x + 2 - 1 + x² - x²)/(x² + 2)
= [ (x² + 2) + (-x² + 2x - 1) ]/(x² + 2)
= [ (x² + 2) - (x² - 2x + 1) ]/(x² + 2)
= [ (x² + 2) - (x - 1)² ]/(x² + 2)
= (x² + 2)/(x² + 2) - (x - 1)²/(x² + 2)
= 1 - (x - 1)²/(x² + 2)
Do (x - 1)² ≥ 0 và (x² + 2) > 0
=> (x - 1)²/(x² + 2) ≥ 0
=> -(x - 1)²/(x² + 2) ≤ 0
=> 1 - (x - 1)²/(x² + 2) ≤ 1
=> A ≤ 1.
Dấu bằng xảy ra <=> -(x - 1)²/(x² + 2) = 0
<=> -(x - 1)² = 0
<=> (x - 1)² = 0
<=> x - 1 = 0
<=> x = 1.
b) Tìm min: B = (8x + 3)/(4x² + 1)
= (8x + 4 - 1 + 4x² - 4x²)/(4x² + 1)
= [ (4x² + 8x + 4) + (-4x² - 1) ]/(4x² + 1)
= [ (4x² + 8x + 4) - (4x² + 1) ]/(4x² + 1)
= [ (2x + 2)² - (4x² + 1) ]/(4x² + 1)
= (2x + 2)²/(4x² + 1) - (4x² + 1)/(4x² + 1)
= (2x + 2)²/(4x² + 1) - 1
Do (2x + 2)² ≥ 0 và 4x² + 1 > 0
=> (2x + 2)²/(4x² + 1) ≥ 0
=> (2x + 2)²/(4x² + 1) - 1 ≥ -1
=> B ≥ -1
Dấu bằng xảy ra <=> (2x + 2)²/(4x² + 1) = 0
<=> (2x + 2)² = 0
<=> 2x + 2 = 0
<=> 2x = -2
<=> x = -1.
Tìm max: B = (8x + 3)/(4x² + 1)
= (8x + 4 - 1 + 16x² - 16x²)/(4x² + 1)
= [ (16x² + 4) + (-16x² + 8x - 1) ]/(4x² + 1)
= [ 4(4x² + 1) - (16x² - 8x + 1) ]/(4x² + 1)
= [ 4(4x² + 1) - (4x - 1)² ]/(4x² + 1)
= 4(4x² + 1)/(4x² + 1) - (4x - 1)²/(4x² + 1)
= 4 - (4x - 1)²/(4x² + 1)
Đến đây lập luận tương tự để chỉ ra maxB = 4 <=> x = 1/4
c) tìm min: C = 2(x² + x + 1)/(x² + 1)
= (2x² + 2x + 2)/(x² + 1)
= [ (x² + 1) + (x² + 2x + 1) ]/(x² + 1)
= [ (x² + 1) + (x + 1)² ]/(x² + 1)
= (x² + 1)/(x² + 1) + (x + 1)²/(x² + 1)
Lập luận tương tự để tìm ra min C = 1 <=> x = -1
tìm max: C = 2(x² + x + 1)/(x² + 1)
= (2x² + 2x + 2)/(x² + 1)
= (3x² - x² + 2x + 3 - 1)/(x² + 1)
= [ (3x² + 3) + (-x² + 2x - 1) ]/(x² + 1)
= [ 3(x² + 1) - (x² - 2x + 1) ]/(x² + 1)
= [ 3(x² + 1) - (x - 1)² ]/(x² + 1)
= 3(x² + 1)/(x² + 1) - (x - 1)²/(x² + 1)
Lập luận tương tự như trên để tìm ra max C = 3 <=> x = 1
Tìm GTNN và GTLN nếu có của các biểu thức
\(A=\dfrac{2x^2-2x+5}{\left(x+1\right)^2}\)
\(B=\dfrac{4x^2+x+4}{x^2+x+1}\)
Biểu thức nào em?