Tìm\(x\in Z\)thỏa mãn (x2 - 1)(x2 - 4)(x2 - 7)(x2 - 10) < 0
Cho phương trình : x2 - 2m( m + 2 )x + m2 +7 = 0
tìm m để pt có 2 nghiệm thỏa mãn x1.x2 - 2(x1 + x2) = 4
Lời giải:
Để pt có 2 nghiệm thì:
$\Delta'=(m^2+2m)^2-(m^2+7)\geq 0$
$\Leftrightarrow m^4+4m^3+3m^2-7\geq 0(*)$
Áp dụng định lý Viet:
$x_1+x_2=2m(m+2)$
$x_1x_2=m^2+7$
Khi đó:
$x_1x_2-2(x_1+x_2)=4$
$\Leftrightarrow m^2+7-4m(m+2)=4$
$\Leftrightarrow -3m^2-8m+3=0$
$\Leftrightarrow (1-3m)(m+3)=0$
$\Leftrightarrow m=\frac{1}{3}$ hoặc $m=-3$
Thử lại với $(*)$ thấy đều không thỏa mãn
Vậy không tồn tại $m$ thỏa mãn đkđb
Tìm m để phương trình
a) x2+2x+m=0 có hai nghiệm x1,x2 thỏa mãn x1=3x2
b) x2-(m+5)x-m+6=0 có hai nghiệm x1,x2 thỏa mãn 2x1+3x2=13
c) x2-2(m+1)x+m2-2m+29=0 có hai nghiệm x1,x2 thỏa mãn x1=2x2
bạn đăng tách ra cho mn giúp nhé
a, Để pt có 2 nghiệm pb
\(\Delta'=1-m\ge0\Leftrightarrow m\le1\)
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-2\left(1\right)\\x_1x_2=m\left(2\right)\end{matrix}\right.\)
\(x_1-3x_2=0\)(3)
Từ (1) ; (3) ta có hệ \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1-3x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x_1=-2\\x_2=-2-x_1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-\dfrac{1}{2}\\x_2=-\dfrac{3}{2}\end{matrix}\right.\)
Thay vào (2) ta được \(m=\left(-\dfrac{1}{2}\right)\left(-\dfrac{3}{2}\right)=\dfrac{3}{4}\)
\(b,\Delta=\left(m+5\right)^2-4\left(-m+6\right)\ge0\Leftrightarrow\left[{}\begin{matrix}m\le-7-4\sqrt{3}\\m\ge-7+4\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x1+x2=m+5\\2x1+3x2=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x1+2x2=2m+10\\2x1+3x2=13\end{matrix}\right.\)\(\)
\(\Rightarrow x2=13-2m-10=3-2m\Rightarrow x1=m+5-x2=m+5-3+2m=3m+2\)
\(x1x2=6-m\Rightarrow\left(3-2m\right)\left(3m+2\right)=6-m\Leftrightarrow\left[{}\begin{matrix}m=0\left(tm\right)\\m=1\left(tm\right)\end{matrix}\right.\)
\(c,\Delta'=\left(m+1\right)^2-\left(m^2-2m+29\right)\ge0\Leftrightarrow m\ge7\)
\(\Rightarrow\left\{{}\begin{matrix}x1+x2=2m+2\\x1=2x2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x2=\dfrac{2m+2}{3}\\x1=\dfrac{2\left(2m+2\right)}{3}\end{matrix}\right.\)
\(\Rightarrow x1.x2=\dfrac{\left(2m+2\right).2\left(2m+2\right)}{9}=m^2-2m+29\Leftrightarrow\left[{}\begin{matrix}m=11\left(tm\right)\\m=23\left(tm\right)\end{matrix}\right.\)
Các số thực a,b,c,x,y,z thỏa mãn a 2 + b 2 + c 2 - 2 a + 4 c + 4 = 0 và x 2 + y 2 + z 2 - 4 x + 4 y + 4 = 0 . Tìm GTLN của S = a - x 2 + b - y 2 + z - c 2 .
Tìm giá trị của m để phương trình x 2 – 2(m – 2)x + 2m – 5 = 0 hai nghiệm x 1 ; x 2 thỏa mãn x 1 ( 1 − x 2 ) + x 2 ( 2 – x 1 ) < 4
A. m > 1
B. m < 0
C. m > 2
D. m < 3
Phương trình x 2 – 2(m – 2)x + 2m – 5 = 0 có a = 1 ≠ 0 và
∆ ' = ( m − 2 ) 2 – 2 m + 5 = m 2 – 6 m + 9 = ( m – 3 ) 2 ≥ 0 ; ∀ m
Nên phương trình luôn có hai nghiệm x 1 ; x 2
Theo hệ thức Vi-ét ta có x 1 + x 2 = 2 m − 4 x 1 . x 2 = 2 m − 5
X é t x 1 ( 1 − x 2 ) + x 2 ( 2 – x 1 ) < 4 ⇔ ( x 1 + x 2 ) – 2 x 1 . x 2 − 4 < 0
⇔ 2m – 4 – 2(2m – 5) – 4 < 0 ⇔ −2m + 2 < 0 m > 1
Vậy m > 1 là giá trị cần tìm
Đáp án: A
bài 1: cho các số dương x, y, z thỏa mãn x+y+z=1. Tìm min
a) A = x2+y2+z2
b) B = x2+y2+3z2
c) C=x2+2y2+3z2
d) D=x2+by2+cz2
Cho pt x^2 + 2(m+1)x +4m - 4 =0 a) Tìm m để pt có 2 nghiệm x1, x2 thỏa mãn x1^2 + x2^2 + 3x1.x2 = 0
\(x^2+2\left(m+1\right)+4m-4=0\)
Theo Vi - ét, ta có :
\(\left\{{}\begin{matrix}x_1+x_2=-\dfrac{b}{a}=-2\left(m+1\right)\\x_1x_2=\dfrac{c}{a}=4m-4\end{matrix}\right.\)
Ta có :
\(x_1^2+x_2^2+3x_1x_2=0\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2+3x_1x_2=0\)
\(\Leftrightarrow\left(x_1+x_2\right)^2+x_1x_2=0\)
\(\Leftrightarrow\left[-2\left(m+1\right)\right]^2+\left(4m-4\right)=0\)
\(\Leftrightarrow4\left(m^2+2m+1\right)+4m-4=0\)
\(\Leftrightarrow4m^2+8m+4+4m-4=0\)
\(\Leftrightarrow4m^2+12m=0\)
\(\Leftrightarrow4m\left(m+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-3\end{matrix}\right.\)
Cho phương trình: x^2 + 4x + m + 1 = 0. Tìm m để pt có 2 nghiệm x1, x2 thỏa mãn pt \(\dfrac{x1}{x2}+\dfrac{x2}{x1}=\dfrac{10}{3}\)
PT có 2 nghiệm `<=> \Delta' >0 <=> 2^2-1.(m+1)>0<=> m<3`
Viet: `x_1+x_2=-4`
`x_1 x_2=m+1`
`(x_1)/(x_2)+(x_2)/(x_1)=10/3`
`<=> (x_1^2+x_2^2)/(x_1x_2)=10/3`
`<=> ((x_1+x_2)^2-2x_1x_2)/(x_1x_2)=10/3`
`<=> (4^2-2(m+1))/(m+1)=10/3`
`<=> m=2` (TM)
Vậy `m=2`.
cho phương trình x^2-(m+1)x+2m-2=0
Tìm m để phương trình có 2 nghiệm x1,x2 thỏa mãn : 3(x1+x2) - x1.x2=10
phương trình: x^2-(m+1)x+2m-2=0 (1)
phương trình(1) là ptbh ẩn x có:đen ta = (-(m+1))^2 -4.1.(2m-2) =m^2+2m+1-8m+8 =m^2-6m+9 = (m-3)^2 với mọi m thuộc r
phương trình (1) có 2 nghiệm pb khi và chỉ khi đen ta lớn hơn 0 suy ra (m-3)^2 lớn hơn 0
khi và chỉ khi m-3 lớn hơn 0. ki và chỉ khi m lớn hơn 3.
theo hệ thức vi ét ta có x1+x2=m+1 (2) ;x1.x2=2m-2 (3)
có 3(x1+x2)-X1.X2=10 (4)
từ (2) (3) (4) suy ra 3(m+1)-(2m-2)=10
khi và chỉ khi 3m+3-2m+2=10
khi và chỉ khi m+5=10
khi và chỉ khi m=5
vậy khi m=5 thì pt(1) có 2n pb x1,x2 thỏa mãn 3(x1+x2)-x1.x2=10
Cách 1:
Từ pt ta có:
\(\Delta=\left(m-3\right)^2>0\)
=>x1=(m-1-m+3)/2=1
->x2=(m-1+m-2)/2=(2m-3)/2
Bạn thay x1,x2 vào rồi tính nha tới đây thì đơn giản rồi.
Cách 2:
từ pt ta có:
\(\hept{\begin{cases}\Delta=\left(m-3\right)^2>0\\x_1+x_2=m-1\\x_1x_2=2-2m\end{cases}}\)
Bạn cũng thay vào rồi tính nha.
Đúng thì nhớ k cho mình nha.
Cho phương trình: x2 - 2(m+1)x+2m+1=0 (1)
b, tìm m để phương trình (1) có 2 nghiệm x1, x2 thỏa mãn:
x21 + (x1 + x2)x2 - 2x1x2 =7
c, tìm m để phương trình (1) có 2 nghiệm x1, x2 thỏa mãn
x1 - 2x2 =3
c) Ta có: \(\text{Δ}=\left[-2\left(m+1\right)\right]^2-4\cdot1\cdot\left(2m+1\right)\)
\(=\left(-2m-2\right)^2-4\left(2m+1\right)\)
\(=4m^2+8m+4-8m-4\)
\(=4m^2\ge0\forall m\)
Do đó, phương trình luôn có nghiệm
Áp dụng hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+1\right)}{1}=2m+2\\x_1\cdot x_2=2m+1\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1-2x_2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2=2m-1\\x_1=2m+2+x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{2m-1}{3}\\x_1=2m+3+\dfrac{2m-1}{3}=\dfrac{8m+8}{3}\end{matrix}\right.\)
Ta có: \(x_1\cdot x_2=2m+1\)
\(\Leftrightarrow\dfrac{2m-1}{3}\cdot\dfrac{8m+8}{3}=2m+1\)
\(\Leftrightarrow\left(2m-1\right)\left(8m+8\right)=9\left(2m+1\right)\)
\(\Leftrightarrow16m^2+16m-8m-8-18m-9=0\)
\(\Leftrightarrow16m^2-10m-17=0\)
\(\text{Δ}=\left(-10\right)^2-4\cdot16\cdot\left(-17\right)=1188\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m_1=\dfrac{10-6\sqrt{33}}{32}\\m_2=\dfrac{10+6\sqrt{33}}{32}\end{matrix}\right.\)
Tiếp tục với bài của bạn Nguyễn Lê Phước Thịnh
b) Ta có: \(x_1^2+\left(x_1+x_2\right)x_2-2x_1x_2=7\)
\(\Leftrightarrow x_1^2+x_2^2-x_1x_2=7\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2=7\)
\(\Rightarrow\left(2m+1\right)^2- 3\left(2m+1\right)=7\)
\(\Leftrightarrow4m^2-2m-9=0\) \(\Leftrightarrow m=\dfrac{1\pm\sqrt{37}}{4}\)
Vậy ...
\Delta'=1^2-m=1-mΔ′=12−m=1−m
phương trình có 2 nghiệm <=>\Delta'\ge0Δ′≥0
<=>1-m\ge01−m≥0
<=>m\le1m≤1
+ Theo vi-et\left\{{}\begin{matrix}x_1+x_2=-2\left(1\right)\\x_1x_2=m\left(2\right)\end{matrix}\right.{x1+x2=−2(1)x1x2=m(2)
Theo bai ra: 3x_1+2x_2=1\left(3\right)3x1+2x2=1(3)
từ (1)và (3), ta có hệ phương trình\left\{{}\begin{matrix}x_1+x_2=-2\\3x_1+2x_2=1\end{matrix}\right.{x1+x2=−23x1+2x2=1 <=>\left\{{}\begin{matrix}x_1=5\\x_2=-7\end{matrix}\right.{x1=5x2=−7. Thay vào (2) : 5.(-7)= m <=> m= -35
Tìm m để phương trình 3 x 2 + 4(m – 1)x + m 2 – 4m + 1 = 0 có hai nghiệm phân biệt x 1 ; x 2 thỏa mãn: 1 x 1 + 1 x 2 = 2 x 1 + x 2
A. m = 1; m = 5
B. m = 1; m = −1
C. m = 5
D. m ≠ 1