given that (x+y):(5-z):(y+z):(9+y)=3:1:2:5
the value of x is
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Câu 1 The function mm is defined on the real numbers by m(k) = \dfrac{k+2}{k+8}m(k)= k+8 k+2 . What is the value of 10\times m(2)10×m(2)? Answer: Câu 2 The function ff is defined on the real numbers by f(x)= ax-3f(x)=ax−3. What is the value of a if f(3)=9f(3)=9? Answer: Câu 3 The function ff is defined on the real numbers by f(x)= 2x+a-3f(x)=2x+a−3. What is the value of a if f(-5)=11f(−5)=11? Answer: Câu 4 The function ff is defined on the real numbers by f(x) = 2 + x-x^2f(x)=2+x−x 2 . What is the value of f(-3)f(−3)? Answer: Câu 5 Given a real number aa and a function ff is defined on the real numbers by f(x)=-6\times|3x|-4f(x)=−6×∣3x∣−4. Compare: f(a)f(a) f(-a)f(−a) Câu 6 There are ordered pairs (x;y)(x;y) where xx and yy are integers such that \dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8} x 5 + 4 y = 8 1 Câu 7 Given a negative number kk and a function ff is defined on the real numbers by f(x)=\dfrac{6}{13}xf(x)= 13 6 x. Compare: f(k)f(k) f(-k)f(−k) Câu 8 Given a positive number kk and a function ff is defined on the real numbers by f(x)=\dfrac{-3}{4}x+4f(x)= 4 −3 x+4. Compare: f(k)f(k) f(-k)f(−k). Câu 9 A=(1+2+3+\ldots+90) \times(12 \times34-6 \times 68):(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6})=A=(1+2+3+…+90)×(12×34−6×68):( 3 1 + 4 1 + 5 1 + 6 1 )= Câu 10 Given that \dfrac{2x+y+z+t}{x}=\dfrac{x+2y+z+t}{y}=\dfrac{x+y+2z+t}{z}=\dfrac{x+y+z+2t}{t} x 2x+y+z+t = y x+2y+z+t = z x+y+2z+t = t x+y+z+2t . The negative value of \dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z} z+t x+y + t+x y+z + x+y z+t + y+z t+x is
given that \(\dfrac{x}{x+y+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=x+y+z\)
Where are non- zero. The value of y is..................
my friends, help me
Sửa đề:
\(\dfrac{x}{x+y+1}=\dfrac{y}{x+z+1}=\dfrac{z}{z+y-2}\)
Dựa vào t/c dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{x+y+1}=\dfrac{y}{x+z+1}=\dfrac{z}{z+y-2}=\dfrac{x+y+z}{x+y+x+z+z+y+\left(1+1-2\right)}=\dfrac{x+y+z}{x+x+y+y+z+z}=\dfrac{1\left(x+y+z\right)}{2\left(x+y+z\right)}=\dfrac{1}{2}\)\(x+y+z=\dfrac{1}{2}\)
\(\Rightarrow\dfrac{y}{x+z+1}=\dfrac{1}{2}\)
\(2y=x+z+1\)
\(3y=\dfrac{1}{2}+1\)
\(y=\dfrac{1}{2}\)
Áp dụng tính chất dãy tỉ số bằng nhau có:
\(\dfrac{x}{x+y+1}=\dfrac{y}{x+z+1}=\dfrac{z}{x+y-2}=\dfrac{x+y+z}{2\left(x+y+z\right)}=\dfrac{1}{2}=x+y+z\)
\(\Rightarrow\dfrac{y}{x+z+1}=\dfrac{1}{2}\)
\(\Rightarrow2y=x+z+1\)
\(\Rightarrow3y=x+y+z+1\)
\(\Rightarrow3y=\dfrac{1}{2}+1\)
\(\Rightarrow y=\dfrac{1}{2}\)
Vậy...
For positive real numbers x,y,z so that: x+y+z = 3. Find the minimum value of expression
A = 1/( x^2 + x) + 1/(y^2+ y) +1/( z^2 +z)
If x, y, z satisfy these equations yz = 3/2 - x2/2; zx = 1/2 - y2/2 and xy = 5/2 - z2/2 then the value of Ιx + y + zΙ is ...........
The prime factorisation 65625 is 3^x * 5^y * 7^z. The value of x + y + z = ....
M.n oi dzúp mik vssssss........ :"""(
Gốc: Suppose that 2(x-3)=3(y+2) ; 5(2-z)=3(y+2) and 2x-3y+z=-4. Find the value of B=x-y+z?
Dịch: Giả sử 2(x-3)=3(y+2) ; 5(2-z)=3(y+2) và 2x-3y+z=-4. Tìm giá trị của B=x-y+z?
M.n nhớ ghi cách giải vs đáp án ra nha!
CẢM ƠN M.N RẤT RẤT NHÌU LÉM!!!! :D :3 >o<
Given that x/y+z+y/z+x+z/x+y=1
Evaluate A=X^2/y+z+y^2/Z+x+z^2/x+y
\(\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}=1\\ =>\dfrac{x}{y+z}=1-\dfrac{y}{z+x}-\dfrac{z}{x+y}\\ =>\dfrac{x}{y+z}=\dfrac{(z+x)(x+y)-y(x+y)-z(z+x)}{(z+x)(x+y)}\\ =>\dfrac{x}{y+z}=\dfrac{xz+yz+x^{2}+xy-xy-y^{2}-z^{2}-xz}{(z+x)(x+y)}\\ =>\dfrac{x}{y+z}=\dfrac{x^{2}-y^{2}-z^{2}+yz}{(z+x)(x+y)}\\ =>\dfrac{x^{2}}{y+z}=\dfrac{x^{3}-xy^{2}-xz^{2}+xyz}{(z+x)(x+y)} \ \ \ \ (1)\\ =>\dfrac{y^{2}}{z+x}=\dfrac{y^{3}-yz^{2}-yx^{2}+xyz}{(x+y)(y+z)} \ \ \ \ (2)\\ =>\dfrac{z^{2}}{x+y}=\dfrac{z^{3}-zx^{2}-zy^{2}+xyz}{(y+z)(z+x)} \ \ \ \ (3)\)
Cộng vế vs vế của (1),(2) và (3) ta đc \(\dfrac{x^{2}}{y+z}+\dfrac{y^{2}}{z+x}+\dfrac{z^{2}}{x+y}=0\)
Given x,y,x such that x/2 = y/3 = z/5 and x+ 3y + 6z = 82. Find M = x+ y + z
ngu ing lích :)
Ta có : \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\Rightarrow\frac{x}{2}=\frac{3y}{9}=\frac{6z}{30}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
\(\frac{x}{2}=\frac{3y}{9}=\frac{6z}{30}=\frac{z+3y+6z}{2+9+30}=\frac{82}{41}=2\)
=> \(\hept{\begin{cases}\frac{x}{2}=2\\\frac{3y}{9}=2\\\frac{6z}{30}=2\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=6\\z=10\end{cases}}\)=> M = x + y + z = 4 + 6 + 10 = 20
Vậy M = 20
Question 7:
Suppose that ( x + 6 )2+ (3y -9 )4 + │x - y - z + 3 │ = 0
Then the value of x + y + z = ................
giải và dịch giùm lẹ lên nha . xin chân thành cám ơn