Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Câu 1 The function mm is defined on the real numbers by m(k) = \dfrac{k+2}{k+8}m(k)= k+8 k+2 . What is the value of 10\times m(2)10×m(2)? Answer: Câu 2 The function ff is defined on the real numbers by f(x)= ax-3f(x)=ax−3. What is the value of a if f(3)=9f(3)=9? Answer: Câu 3 The function ff is defined on the real numbers by f(x)= 2x+a-3f(x)=2x+a−3. What is the value of a if f(-5)=11f(−5)=11? Answer: Câu 4 The function ff is defined on the real numbers by f(x) = 2 + x-x^2f(x)=2+x−x 2 . What is the value of f(-3)f(−3)? Answer: Câu 5 Given a real number aa and a function ff is defined on the real numbers by f(x)=-6\times|3x|-4f(x)=−6×∣3x∣−4. Compare: f(a)f(a) f(-a)f(−a) Câu 6 There are ordered pairs (x;y)(x;y) where xx and yy are integers such that \dfrac{5}{x}+\dfrac{y}{4}=\dfrac{1}{8} x 5 + 4 y = 8 1 Câu 7 Given a negative number kk and a function ff is defined on the real numbers by f(x)=\dfrac{6}{13}xf(x)= 13 6 x. Compare: f(k)f(k) f(-k)f(−k) Câu 8 Given a positive number kk and a function ff is defined on the real numbers by f(x)=\dfrac{-3}{4}x+4f(x)= 4 −3 x+4. Compare: f(k)f(k) f(-k)f(−k). Câu 9 A=(1+2+3+\ldots+90) \times(12 \times34-6 \times 68):(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{1}{6})=A=(1+2+3+…+90)×(12×34−6×68):( 3 1 + 4 1 + 5 1 + 6 1 )= Câu 10 Given that \dfrac{2x+y+z+t}{x}=\dfrac{x+2y+z+t}{y}=\dfrac{x+y+2z+t}{z}=\dfrac{x+y+z+2t}{t} x 2x+y+z+t = y x+2y+z+t = z x+y+2z+t = t x+y+z+2t . The negative value of \dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z} z+t x+y + t+x y+z + x+y z+t + y+z t+x is
M.n oi dzúp mik vssssss........ :"""(
Gốc: Suppose that 2(x-3)=3(y+2) ; 5(2-z)=3(y+2) and 2x-3y+z=-4. Find the value of B=x-y+z?
Dịch: Giả sử 2(x-3)=3(y+2) ; 5(2-z)=3(y+2) và 2x-3y+z=-4. Tìm giá trị của B=x-y+z?
M.n nhớ ghi cách giải vs đáp án ra nha!
CẢM ƠN M.N RẤT RẤT NHÌU LÉM!!!! :D :3 >o<
Question 7:
Suppose that ( x + 6 )2+ (3y -9 )4 + │x - y - z + 3 │ = 0
Then the value of x + y + z = ................
giải và dịch giùm lẹ lên nha . xin chân thành cám ơn
Find the value of expresssion x2 + y2 + z2, if x+y+z = 5 and \(\dfrac{1}{x}\) + \(\dfrac{1}{y}\) + \(\dfrac{1}{z}\)= 0
Tìm x,y,z bt
a,x+1/3=y+3/4=z+5/6 và 2×x+3×y+4×z=9
b,x-1/3=y-2/4=z+7/5 và x+y-z =8
c,x/2=y/3, y/2=z/5 và x+y+z=50
d, x/2=y/5, y/3=z/2 và 2×x+3×y+5×z=127
Question 1:
Fill the suitable number in the following blank?
.\(343=\)_____\(3\)
Question 2:
The positive value of such that \(\left|2x-3\right|+7=16\) is _______
Question 3:
Given a function \(g\left(x\right)=2\sqrt{x-7}\) . Find the value of \(g\left(11\right)\)?
Answer: The value of \(g\left(11\right)\) is ._________
Question 4:
Find the value of such that \(0,008=\left(0,2\right)^x\).
Answer: . \(x=\)_________
Question 5:
Given a function\(g\left(x\right)=\frac{2}{3-x}\) . Find the value of .\(g\left(1\right)+g\left(2\right)\)
Answer: The value of \(g\left(1\right)+g\left(2\right)\) is ._______
Question 6:
Suppose that \(\frac{7y-x}{2x+y}=\frac{1}{3}\) then the ratio of \(x\) to \(y\) is .________
Question 7:
If \(x\) is directly proportional to \(y\) with the scaling factor is 8, \(z\) is directly proportional to \(x\) with the scaling factor is 4.
Then \(z\) is directly proportional to \(y\) with the scaling factor is______ .
Question 8:
The maximum value of \(A=\frac{6}{2.\left(x-3\right)^2+3}\) is .______
Question 10:
Suppose that\(\frac{7-3x}{5}=\frac{y+4}{3}=\frac{6x-y}{5}\) . Find the ratio of \(y\) to \(x\)
Answer: The ratio of \(y\) to \(x\) is .______________-
(write your answer by decimal in simplest form)
bài 1: tìm x,y
a, x+1/3=y-1/5=z+2/7 và 2y+2z=35
b,4x/5=7y/9 và x-y= -5
c, x/5=y/3 và x^2-y^2=16 (x,y>0)
bài 2:
a, x-1/2=y-2/3=z-3/4 và 2x+3y-z=50
b, x/2=y/3=z/5 và xyz=810
c, x/y+z+1=y/x+z+1=z/x+y+1=x+y+z
Bài 1:Tìm x biết:
1) (x-3)/7=y-5/5=z+7/3 và x+y+z=43
2) x+11/3=y+2/2=z+3/4 và x-y+z=2x
3) x-1/3=y-2/4=z+7/5 và x+y-z=8
4) x+1/2=y+3/4=z+5/6 và 2x+3y+4z=9
Bài 2: Cho a+b/a-b = c+a/c-a Chứng Minh
a^2= b.c
find the absolute value of y such that x(x-y+z)=5
y(y-z-x)=24
z(z+x-y)=7