Những câu hỏi liên quan
H24
Xem chi tiết
HN
29 tháng 7 2021 lúc 19:06

\(2\sqrt{2x+4}+4\sqrt{2-x}=\sqrt{9x^2+16}\)

\(\Leftrightarrow\left(2\sqrt{2x+4}+4\sqrt{2-x}\right)^2=\left(\sqrt{9x^2+16}\right)^2\)

\(\Leftrightarrow4\left(2x+4\right)+16\left(2-x\right)+16\sqrt{2x+4}\sqrt{2-x}=9x^2+16\)

\(\Leftrightarrow4.2\left(4-x^2\right)+16\sqrt{2\left(4-x^2\right)}=x^2+8x\)

Đặt \(\sqrt{2\left(4-x^2\right)}=a\)

\(\Rightarrow4a^2+16a=x^2+8x\)

\(\Leftrightarrow\left(2a-x\right)\left(2a+x+8\right)=0\)

Làm nốt

Bình luận (0)
NT
Xem chi tiết
CD
4 tháng 10 2016 lúc 22:30

\(2\sqrt{2x+4}+4\sqrt{2-x}=\sqrt{9x^2+16}\Leftrightarrow\left(2\sqrt{2x+4}+4\sqrt{2-x}\right)^2=9x^2+16\)

\(\Leftrightarrow\left(\sqrt{8x+16}\right)^2+2\cdot\sqrt{8x+16}\cdot\sqrt{32-16x}+\left(\sqrt{32-16x}\right)^2=9x^2+16\)

\(\Leftrightarrow8x+16+2\sqrt{\left(8x+16\right)\left(32-16x\right)}+32-16x-9x^2-16=0\)

\(\Leftrightarrow-8x+32-9x^2+2\sqrt{512-128x^2}=0\)

=> x = \(\frac{\sqrt{2^5}}{3}=1,885618083\)

Bình luận (0)
LS
28 tháng 7 2017 lúc 9:42

chào Minh Thư. Bài này hay quá, mình củng đang cần giải gấp. Bạn đã có lời giải nào hay chưa? Cho mình xin với nhé!

Bình luận (0)
VT
27 tháng 1 2019 lúc 12:01

khó quá

Bình luận (0)
KN
Xem chi tiết
H9
24 tháng 9 2023 lúc 10:10

a) \(\sqrt{x-1}+\sqrt{4x-4}-\sqrt{25x-25}+2=0\) (ĐK: \(x\ge1\)

\(\Leftrightarrow\sqrt{x-1}+\sqrt{4\left(x-1\right)}-\sqrt{25\left(x-1\right)}+2=0\)

\(\Leftrightarrow\sqrt{x-1}+2\sqrt{x-1}-5\sqrt{x-1}+2=0\)

\(\Leftrightarrow-2\sqrt{x-1}=-2\)

\(\Leftrightarrow\sqrt{x-1}=\dfrac{2}{2}\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x-1=1\)

\(\Leftrightarrow x=2\left(tm\right)\)

b) \(\sqrt{16x+16}-\sqrt{9x+9}+\sqrt{4x+4}+\sqrt{x+1}=16\) (ĐK: \(x\ge-1\))

\(\Leftrightarrow\sqrt{16\left(x+1\right)}-\sqrt{9\left(x+1\right)}+\sqrt{4\left(x+1\right)}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}-3\sqrt{x+1}+2\sqrt{x+1}+\sqrt{x+1}=16\)

\(\Leftrightarrow4\sqrt{x+1}=16\)

\(\Leftrightarrow\sqrt{x+1}=4\)

\(\Leftrightarrow x+1=16\)

\(\Leftrightarrow x=15\left(tm\right)\)

Bình luận (0)
PP
Xem chi tiết
NT
Xem chi tiết
NN
Xem chi tiết
TH
18 tháng 12 2020 lúc 18:27

ĐKXĐ: \(x\ge1\).

Phương trình đã cho tương đương:

\(\sqrt{x+3}+\sqrt{x-1}=\dfrac{8}{\sqrt{4x^4-12x^3+9x^2+16}-\left(2x^2-3x\right)}\)

\(\Leftrightarrow\sqrt{x+3}+\sqrt{x-1}=\dfrac{\sqrt{4x^4-12x^3+9x^2+16}+\left(2x^2-3x\right)}{2}\)

\(\Leftrightarrow\sqrt{4x^4-12x^3+9x^2+16}+\left(2x^2-3x\right)-2\sqrt{x+3}-2\sqrt{x-1}=0\)

\(\Leftrightarrow\left(\sqrt{4x^4-12x^3+9x^2+16}-2\sqrt{x+3}\right)+\left(2x^2-3x-2\sqrt{x-1}\right)=0\)

\(\Leftrightarrow\dfrac{4x^4-12x^3+9x^2-4x+4}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{4x^4-12x^3+9x^2-4x+4}{2x^2-3x+2\sqrt{x-1}}=0\)

\(\Leftrightarrow\left(x-2\right)\left(4x^3-4x^2+x-2\right)\left(\dfrac{1}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{1}{2x^2-3x+2\sqrt{x-1}}\right)=0\).

Do \(x\ge1\) nên ta có \(\dfrac{1}{\sqrt{4x^4-12x^3+9x^2+16}+2\sqrt{x+3}}+\dfrac{1}{2x^2-3x+2\sqrt{x-1}}>0\).

Do đó \(\left[{}\begin{matrix}x-2=0\Leftrightarrow x=2\left(TMĐK\right)\\4x^3-4x^2+x-2=0\left(1\right)\end{matrix}\right.\).

Giải phương trình bậc 3 ở (1) ta được \(x=\dfrac{\sqrt[3]{36\sqrt{13}+53\sqrt{6}}}{\sqrt[6]{279936}}+\dfrac{1}{\sqrt[6]{7776}\sqrt[3]{36\sqrt{13}+53\sqrt{6}}}+\dfrac{1}{3}\approx1,157298106\left(TMĐK\right)\).

Vậy...

 

 

 

Bình luận (0)
TH
18 tháng 12 2020 lúc 18:49

Vì trong bài làm của mình có một số dòng khá dài nên bạn có thể vào trang cá nhân của mình để đọc tốt hơn!

Bình luận (0)
NT
Xem chi tiết
NT
Xem chi tiết
LA
Xem chi tiết