Những câu hỏi liên quan
TP
Xem chi tiết
CL
26 tháng 9 2016 lúc 23:47

\(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=\frac{\left(xy+yz+zx\right)^2}{x^2y^2z^2}\)(1) với x+y+z=0. Bạn quy đồng vế trái (1) dc \(\frac{x^2y^2+y^2z^2+z^2x^2}{x^2y^2z^2}=\frac{\left(xy+yz+zx\right)^2-2\left(x+y+z\right)xyz}{x^2y^2z^2}\)

Bình luận (0)
FM
Xem chi tiết
DN
16 tháng 10 2018 lúc 21:43

\(\frac{a^2}{b}-a+b+b=\frac{a^2-ab+b^2}{b}+b\ge2\sqrt{a^2-ab+b^2}\)

\(=\sqrt{a^2-ab+b^2}+\sqrt{a^2-ab+b^2}=\sqrt{a^2-ab+b^2}+\sqrt{\frac{3}{4}\left(a-b\right)^2+\frac{1}{4}\left(a+b\right)^2}\)

\(\ge\sqrt{a^2-ab+b^2}+\sqrt{\frac{1}{4}\left(a+b\right)^2}=\sqrt{a^2-ab+b^2}+\frac{a+b}{2}\)

chứng minh tương tự ta được

\(\frac{b^2}{c}-b+c+c\ge\sqrt{b^2-bc+c^2}+\frac{b+c}{2},\frac{c^2}{a}-c+a+a\ge\sqrt{c^2-ca+a^2}+\frac{a+c}{2}\)

cộng vế với vế ta được

\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}+a+b+c\ge\sqrt{a^2-ab+b^2}+\sqrt{b^2-bc+c^2}+\sqrt{c^2-ca+a^2}+a+b+c\)

Dấu bằng xảy ra khi a=b=c

Bình luận (0)
TV
Xem chi tiết
LH
Xem chi tiết
PQ
18 tháng 12 2019 lúc 14:02

\(VT=\frac{\left(\sqrt[3]{abc}\right)^2}{2abc}+\Sigma\frac{a^2}{a^2\left(b+c\right)}\ge\frac{\left(a+b+c+\sqrt[3]{abc}\right)^2}{\Sigma a^2\left(b+c\right)+2abc}=\frac{\left(a+b+c+\sqrt[3]{abc}\right)^2}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Bình luận (0)
 Khách vãng lai đã xóa
DD
Xem chi tiết
DN
20 tháng 5 2018 lúc 10:42

Nhon ~~ Xin Chào Bạn Nha >< Hiện Giờ Bên Tụi Mk đang có 1 cuộc thi đó là cuộc thi ảnh đẹp nhoa >< Nếu Bạn mún tham gia Hãy Chọn 1 Tấm hik Đẹp Nhất của mk Và Đưa Link ảnh đó cho mk . sau ngày hum nay 20/5 -> đến Ngày 22 / 5 Mk sẽ ra Kết qả và gửi cho Bạn / 

giải nhất sẽ đc 3 mỗi ngày , thời hạn sẽ kết thúc sau khi hết 1 tuần 

giải nhì sẽ được 2 mỗi ngày . kết thúc sau 4 ngày 

giải 3 sẽ đc mk kb +   1  

.>< Thanh Kìu nhìu nhoa >< 

Bình luận (0)
IN
21 tháng 3 2019 lúc 20:35

Duyên Nguyễn : Ảnh về chủ đề j ? Hay ảnh tự do ?

Bình luận (0)
HL
Xem chi tiết
LC
Xem chi tiết
H24
24 tháng 11 2019 lúc 13:21

Tiện tay chém trước vài bài dễ.

Bài 1:

\(VT=\Sigma_{cyc}\sqrt{\frac{a}{b+c}}=\Sigma_{cyc}\frac{a}{\sqrt{a\left(b+c\right)}}\ge\Sigma_{cyc}\frac{a}{\frac{a+b+c}{2}}=\frac{2\left(a+b+c\right)}{a+b+c}=2\)

Nhưng dấu bằng không xảy ra nên ta có đpcm. (tui dùng cái kí hiệu tổng cho nó gọn thôi nha!)

Bài 2:

1) Thấy nó sao sao nên để tối nghĩ luôn

2) 

c) \(VT=\left(a-b+1\right)^2+\left(b-1\right)^2\ge0\)

Đẳng thức xảy ra khi a = 0; b = 1

Bình luận (0)
 Khách vãng lai đã xóa
H24
24 tháng 11 2019 lúc 13:27

2b) \(VT=\left(a-2b+1\right)^2+\left(b-1\right)^2+1\ge1>0\)

Có đpcm

Bình luận (0)
 Khách vãng lai đã xóa
H24
24 tháng 11 2019 lúc 13:44

Ồ bài 2 a mới sửa đề ak:)

Bình luận (0)
 Khách vãng lai đã xóa
LC
Xem chi tiết
H24
24 tháng 11 2019 lúc 13:29

Bài 1:

Ta có: \(\frac{ab}{a+b}=ab.\frac{1}{a+b}\le\frac{ab}{4}\left(\frac{1}{a}+\frac{1}{b}\right)=\frac{b}{4}+\frac{a}{4}\)

Tương tự các BĐT còn lại rồi cộng theo vế ta có d9pcm.

Bài 2: 2 bài đều dùng Svac cả!

Bình luận (0)
 Khách vãng lai đã xóa
H24
24 tháng 11 2019 lúc 13:36

Bài 2a làm bên h rồi nên chụp lại thôi!

 (cần thì ib t gửi link cho)

Bình luận (0)
 Khách vãng lai đã xóa
H24
24 tháng 11 2019 lúc 14:17

Chú thích cho you hiểu: Ở bài 1:

Chúng ta biết rằng: \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\Rightarrow\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\ge\frac{1}{a+b}\)

\(\Rightarrow\frac{ab}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\ge\frac{ab}{a+b}\) thế thôi!

Bình luận (0)
 Khách vãng lai đã xóa
MA
Xem chi tiết
PH
6 tháng 2 2022 lúc 8:41

srweafgtseawref

Bình luận (0)
 Khách vãng lai đã xóa