cho biểu thức \(A=\frac{x}{x+1}-\frac{3-3x}{x^2-x+1}+\frac{x+4}{x^3+1}\)
Rút gọn biểu thức A
Bài 1: Giải phương trình sau:
\(2x^2+5+2\sqrt{x^2+x-2}=5\sqrt{x-1}+5\sqrt{x+2}\)
Bài 2: Cho biểu thức
\(P=\left(\frac{6x+4}{3\sqrt{3x^2}-8}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right).\left(\frac{1+3\sqrt{3x^2}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
a) Tìm ĐKXĐ và rút gọn biểu thức P
b) Tìm tất cả các giá trị nguyên của x để biểu thức P có giá trị nguyên
Bài 3: Cho biểu thức
\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{1-\frac{8}{x}+\frac{16}{x^2}}}\)
a) Tìm ĐKXĐ và rút gọn biểu thức A
b) Tìm tất cả các giá trị nguyên của x để biểu thức A có giá trị nguyên
Cho biểu thức A=\(\frac{x}{x+1}-\frac{3-3x}{x^2-x+1}+\frac{x+4}{x^3+1}\)
a) Rút gọn biểu thức A
\(A=\frac{x}{x+1}-\frac{3-3x}{x^2-x+1}+\frac{x+4}{x^3+1}=\frac{x\left(x^2-x+1\right)-\left(3-3x\right)\left(x+1\right)+x+4}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{x^3-x^2+x-3x-3+3x^2+3x+x+4}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{x^3+2x^2+2x+1}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{x^3+1+2x^2+2x}{\left(x+1\right)\left(x^2-x+1\right)}=\frac{\left(x+1\right)\left(x^2-x+1\right)+2x\left(x+1\right)}{\left(x+1\right)\left(x^2-x+1\right)}=1+2x\left(x+1\right)\)
Cho biểu thức:
\(A=x-\left(\frac{16x-x^2}{x^2-4}+\frac{3+2x}{2-x}-\frac{2-3x}{x+2}\right):\frac{x-1}{x^3+4x^2+4x}\)
1) Rút gọn biểu thức A.
2) Tính giá trị của biểu thức A với các giá trị x thỏa mãn:\(|x^2-3|=3-x\)
Câu 1:a)Rút gọn biểu thức:A=\(\left(1+\frac{x}{x+1}\right):\left(\frac{3x^2}{x^2-1}+1\right)\)
b)Rút gọ biểu thức A
b)Tính giá trị của biểu thức A khi x=1/3
Câu 2:Rút gọ phân thức\(\frac{12x^4y^2}{15xy^2}\)
b)Tìm x(x+1)-(x+2)2=2
c)Cho \(x+\frac{1}{x}=3\) Hãy tính giá trị của biểu thức \(x^3\frac{1}{x^3}\)
Bài 1:
a: \(A=\dfrac{x+1+x}{x+1}:\dfrac{3x^2+x^2-1}{x^2-1}\)
\(=\dfrac{2x+1}{x+1}\cdot\dfrac{\left(x+1\right)\left(x-1\right)}{\left(2x+1\right)\left(2x-1\right)}=\dfrac{x-1}{2x-1}\)
b: Thay x=1/3 vào A, ta được:
\(A=\left(\dfrac{1}{3}-1\right):\left(\dfrac{2}{3}-1\right)=\dfrac{-2}{3}:\dfrac{-1}{3}=2\)
Cho biểu thức: \(P=\left(\frac{x+2}{3x}+\frac{2}{x+1}-3\right):\frac{2-4x}{x+1}+\frac{3x+1-x^2}{3x}\)
1) rút gọn biểu thức P
2) tìm giá trị của P biết /x/=1/3
3) tìm các giá trị nguyên của x để biểu thức A có giá trị là số nguyên
câu 3
cho biểu thức
\(A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\frac{2x}{5x-5}\)
a/ rút gọn A
b/tìm giá trị của A tại x=3 ; x=-1
c/ tìm x để A=2
câu 4
cho biểu thức \(B=\left(\frac{x}{3x-9}+\frac{2x-3}{3x-x^2}\right).\frac{3x^2-9x}{x^2-6x+9}\)
a/tìm điều kiện của x để giá trị của biểu thức xác định
b/rút gọn B
Câu 3 :
\(a,A=\left(\frac{x+1}{x-1}-\frac{x-1}{x+1}\right):\frac{2x}{5x-5}\) ĐKXđ : \(x\ne\pm1\)
\(A=\left(\frac{\left(x+1\right)^2}{\left(x-1\right)\left(x+1\right)}-\frac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}\right):\frac{2x}{5\left(x-1\right)}\)
\(A=\left(\frac{x^2+2x+1-x^2+2x-1}{\left(x-1\right)\left(x+1\right)}\right).\frac{5\left(x-1\right)}{2x}\)
\(A=\frac{4x}{\left(x-1\right)\left(x+1\right)}.\frac{5\left(x-1\right)}{2x}\)
\(A=\frac{10}{x+1}\)
\(B=\left(\frac{x}{3x-9}+\frac{2x-3}{3x-x^2}\right).\frac{3x^2-9x}{x^2-6x+9}.\)
ĐKXđ : \(x\ne0;x\ne3\)
\(B=\left(\frac{x}{3\left(x-3\right)}+\frac{2x-3}{x\left(3-x\right)}\right).\frac{3x\left(x-3\right)}{x^2-6x+9}\)
\(B=\left(\frac{x^2}{3x\left(x-3\right)}+\frac{9-6x}{3x\left(x-3\right)}\right).\frac{3x\left(x-3\right)}{x^2-6x+9}\)
\(B=\frac{x^2-6x+9}{3x\left(x-3\right)}.\frac{3x\left(x-3\right)}{x^2-6x+9}=1\)
cho biêu thức \(A=\left(\frac{2x^2+2}{x^3-1}+\frac{x^2-x+1}{x^4+x^2+1}-\frac{x^2+3}{x^3-x^2+3x-3}\right):\frac{1}{x-1}\)với x khác 1
a rút gọn A
b tìm x để biểu thức A có giá trị nguyên
Rút gọn biểu thức:
a, \(\frac{x^4+15x+7}{2x^3+2}.\frac{x}{14x^2+1}.\frac{4x^3+4}{x^4+15x+7}\)
b, \(\frac{x^7+3x^2+2}{x^3-1}.\frac{3x}{x+1}.\frac{x^2+x+1}{x^7+3x^2+2}\)
Cho
\(A=\left[\left(\frac{x+1}{x-2}+\frac{3}{2-x}-3x\right)\div\frac{1-3x}{x-2}\right]-\frac{x^2+4}{x-2}\)
a) TÌM ĐIỀU KIỆN ĐỂ BIỂU THỨC A CÓ NGHĨA
b) rút gọn và tính giá trị biểu thức A với x= \(\frac{1}{2}\)
a, ĐỂ A có nghĩa :
\(\Rightarrow x-2\ne0\)
\(\Rightarrow x\ne2\)
\(a,\text{để a xác định thì }\hept{\begin{cases}x-2\ne0\\2-x\ne0\end{cases}\Rightarrow x\ne2}\)
\(b,\left[\left(\frac{x+1}{x-2}+\frac{3}{2-x}-3x\right):\frac{1-3x}{x-2}\right]-\frac{x^2+4}{x-2}\)
\(=\left[\left(\frac{x+1}{x-2}-\frac{3}{x-2}-3x\right):\frac{1-3x}{x-2}\right]-\frac{x^2+4}{x-2}\)
\(=\left(1-3x\right)\cdot\frac{\left(x-2\right)}{1-3x}-\frac{x^2+4}{x-2}=\frac{\left(x-2\right)^2}{x-2}-\frac{x^2+4}{x-2}=\frac{-4x}{x-2}\)
Vậy với \(x=\frac{1}{2}\text{ }\Rightarrow A=\frac{-\frac{4.1}{2}}{\frac{1}{2}-2}=\frac{4}{3}\)