cho x,y,z thỏa mãn x(x-1)+y(y-1)+z(z-1)\(\le\)\(\frac{4}{3}\)
chứng minh rằng x+y+z\(\le\)4
Cho x, y, z thỏa mãn \(x\left(x-1\right)+y\left(y-1\right)+z\left(z-1\right)\le\frac{4}{3}\)
chứng minh rằng x+y+z\(\le\)4
Cho x, y, z thỏa mãn \(x\left(x-1\right)+y\left(y-1\right)+z\left(z-1\right)\le\frac{3}{4}\)
Chứng minh rằng: \(x+y+z\le4\)
Hix vừa làm xong
Link nè bn tham khảo nhé:
Câu hỏi của Phan Mạnh Tuấn - Toán lớp 9 - Học toán với OnlineMath
Cho các số dương x,y,z thỏa mãn x + y + z = 1. Chứng minh rằng
\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\)\(\le\frac{1}{4x}+\frac{1}{4y}+\frac{1}{4z}+\frac{9}{4}\)
\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\le\frac{1}{4x}+\frac{1}{4y}+\frac{1}{4z}+\frac{9}{4}\)
\(\Leftrightarrow\left(x+y+z\right)\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)\le\left(x+y+z\right)\left(\frac{1}{4x}+\frac{1}{4y}+\frac{1}{4z}\right)+\frac{9}{4}\)
\(\Leftrightarrow\frac{z}{x+y}+\frac{x}{y+z}+\frac{y}{z+x}\le\frac{y+z}{4x}+\frac{z+x}{4y}+\frac{x+y}{4z}\)
Ta có:
\(VP=\frac{1}{4}\left(\frac{x}{y}+\frac{x}{z}+\frac{y}{x}+\frac{y}{z}+\frac{z}{x}+\frac{z}{y}\right)\)
\(\ge\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{x+y}=VT\)
Cho các số dương x,y,z thỏa mãn x + y + z = 1. Chứng minh rằng:
\(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\)\(\le\frac{1}{4x}+\frac{1}{4y}+\frac{1}{4z}+\frac{9}{4}\)
Cho x, y, z là 3 số thực tùy ý thỏa mãn x + y + z = 0 và \(-1\le x\le1,-1\le y\le1,-1\le z\le1\)
Chứng minh rằng đa thức \(x^2+y^4+z^6\le2\)
vì trong 3 số x,y,z có ít nhất là 2 số cùng dấu
giả sử \(x,y\le0\)\(\Rightarrow z=-\left(x+y\right)\ge0\)
Mà \(-1\le x,y,z\le1\)nên \(x^2\le\left|x\right|;y^4\le\left|y\right|;z^6\le\left|z\right|\)
\(\Rightarrow x^2+y^4+z^6\le\left|x\right|+\left|y\right|+\left|z\right|=-x-y+z=-\left(x+y\right)+z=2z\le2\)
Dấu " = " xảy ra chẳng hạn x = 0 ; y = -1; z = 1
cho x,y,z thỏa mãn \(\left\{{}\begin{matrix}x^2+y^2+z^2=2\\xy+yz+xz=1\end{matrix}\right.\)
chứng minh \(\dfrac{-4}{3}\le x,y,z\le\dfrac{4}{3}\)
https://olm.vn/hoi-dap/detail/227981379332.html
Bạn tham khảo ở đây nhé.
cho x, y, z thỏa mãn x+ y + z = xyz chứng minh rằng: \(\frac{1}{\sqrt{1+x^2}}+\frac{1}{\sqrt{1+y^2}}+\frac{1}{\sqrt{1+z^2}}\le\frac{3}{2}\)
Ta có:\(\frac{1}{\sqrt{1+x^2}}=\frac{\sqrt{yz}}{\sqrt{yz+x^2yz}}=\frac{\sqrt{yz}}{\sqrt{yz+x\left(x+y+z\right)}}=\sqrt{\frac{yz}{\left(x+y\right)\left(x+z\right)}}\)
Tương tự: \(\frac{1}{\sqrt{1+y^2}}=\sqrt{\frac{zx}{\left(y+z\right)\left(y+x\right)}}\)
\(\frac{1}{\sqrt{1+z^2}}=\sqrt{\frac{xy}{\left(z+x\right)\left(z+y\right)}}\)
\(\Rightarrow VT=\sqrt{\frac{yz}{\left(x+y\right)\left(x+z\right)}}+\sqrt{\frac{zx}{\left(y+z\right)\left(y+x\right)}}+\sqrt{\frac{xy}{\left(z+x\right)\left(z+y\right)}}\le\frac{1}{2}\left(\frac{y}{x+y}+\frac{z}{x+z}+\frac{z}{y+z}+\frac{x}{x+y}+\frac{x}{x+z}+\frac{y}{z+y}\right)=\frac{3}{2}\)
Cho x,y,z là các số thỏa mãn 1\(\le\)x\(\le\)y\(\le\)z\(\le\)2.
Chứng minh rằng: \(\left(x+y+z\right).\left(\frac{1}{x}+\frac{1}{\: y}+\frac{1}{z}\right)\le\frac{81}{8}\).
cho các số thực x,y,z thỏa mãn \(\left(x-y +z\right)^2\)+\(\sqrt{y^4}\)+\(\left|1-z^3\right|\) \(\le\) 0
Chứng minh rằng \(x^{2023}\)+\(y^{2024}\)+\(z^{2025}\)=0
Lời giải:
Ta thấy, với mọi $x,y,z$ là số thực thì:
$(x-y+z)^2\geq 0$
$\sqrt{y^4}\geq 0$
$|1-z^3|\geq 0$
$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|\geq 0$ với mọi $x,y,z$
Kết hợp $(x-y+z)^2+\sqrt{y^4}+|1-z^3|\leq 0$
$\Rightarrow (x-y+z)^2+\sqrt{y^4}+|1-z^3|=0$
Điều này xảy ra khi: $x-y+z=y^4=1-z^3=0$
$\Leftrightarrow y=0; z=1; x=-1$