Những câu hỏi liên quan
H24
Xem chi tiết
NL
23 tháng 3 2021 lúc 19:24

Do \(x-2019\) và \(x-2020\) là 2 số nguyên liên tiếp nên luôn khác tính chẵn lẻ

\(\Rightarrow\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}\) luôn lẻ với mọi x

Nếu \(y< 2021\Rightarrow\) vế trái nguyên còn vế phải không nguyên (không thỏa mãn)

\(\Rightarrow y\ge2021\)

Nếu \(y>2021\), do 2020 chẵn \(\Rightarrow2020^{y-2021}\) chẵn. Vế trái luôn lẻ, vế phải luôn chẵn \(\Rightarrow\) không tồn tại x; y nguyên thỏa mãn

\(\Rightarrow y=2021\)

Khi đó pt trở thành: \(\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}=1\)

Nhận thấy \(x=2019\) và \(x=2020\) là 2 nghiệm của pt đã cho

- Với \(x< 2019\Rightarrow\left\{{}\begin{matrix}\left(x-2019\right)^{2020}>0\\\left(x-2020\right)^{2020}>1\end{matrix}\right.\) \(\Rightarrow\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}>1\) pt vô nghiệm

- Với \(x>2020\Rightarrow\left\{{}\begin{matrix}\left(x-2020\right)^{2020}>0\\\left(x-2019\right)^{2020}>1\end{matrix}\right.\) \(\Rightarrow\left(x-2019\right)^{2020}+\left(x-2020\right)^{2020}>1\) pt vô nghiệm

- Với \(2019< x< 2020\) viết lại pt: \(\left(x-2019\right)^{2020}+\left(2020-x\right)^{2020}=1\)

Ta có: \(\left\{{}\begin{matrix}0< x-2019< 1\\0< 2020-x< 1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\left(x-2019\right)^{2020}< x-2019\\\left(2020-x\right)^{2020}< 2020-x\end{matrix}\right.\)

\(\Rightarrow\left(x-2019\right)^{2020}+\left(2020-x\right)^{2020}< 1\) pt vô nghiệm

Vậy pt có đúng 2 cặp nghiệm: \(\left(x;y\right)=\left(2019;2021\right);\left(2020;2021\right)\)

Bình luận (0)
Xem chi tiết
LP
22 tháng 3 2022 lúc 16:14

x thuộc 2019 ; 2020

y=2021

Bình luận (0)
OY
Xem chi tiết
OY
Xem chi tiết
H24
25 tháng 3 2022 lúc 15:54

\(=\dfrac{\left|x-2020\right|+2022-1}{\left|x-2020\right|+2022}=1-\dfrac{1}{\left|x-2020\right|+2022}\\ mà\left|x-2020\right|\ge0\\ \Rightarrow\left|x-2022\right|+2022\ge2022\) 

\(\Rightarrow\dfrac{1}{\left|x-2020\right|+2022}\le\dfrac{1}{2022}\\ =1-\dfrac{1}{\left|x-2020\right|+2022}\ge1-\dfrac{1}{2022}\\ =\dfrac{2021}{2022}\\ \Rightarrow B_{min}=\dfrac{2021}{2022}.tại.x-2020=0\Rightarrow x=2020\)

Bình luận (5)
HN
Xem chi tiết
NV
11 tháng 3 2022 lúc 20:40

\(A=\left(\dfrac{2020}{2021}xy^5z\right).\left(\dfrac{2020}{2021}x^3yz^2\right).\left(-\dfrac{2020}{2021}\right)^0\)

\(a)A=\dfrac{2020.2021.2020}{2021.2020.2021}.\left(x.x^3\right).\left(y^5.y\right).\left(z.z^2\right)\Leftrightarrow A=\dfrac{2020}{2021}x^4.y^6.z^3\)

\(b)A=\dfrac{2020}{2021}x^4.y^6.z^3\)

\(\Rightarrow\text{A có hệ số là:}\dfrac{2020}{2021}\)

\(\text{Phần biến là:}\left(x,y,z\right)\)

\(c)\text{Xét A ta có:}\dfrac{2020}{2021}< 0;x^4,y^6\text{ luôn }< 0\)

\(\Rightarrow\dfrac{2020}{2021}x^4.y^6>0\Rightarrow\text{ Nếu }z< 0\Rightarrow A\le0\text{ và z có số mũ là:3}\)

\(\text{Chẳng hạn:}\left(-\right).\left(-\right).\left(-\right)=\left(-\right).< 0\Rightarrow z\text{ phải }\ge0\text{ thì }A\ge0\)

\(\Rightarrow Z\in N\)

Bình luận (0)
BB
Xem chi tiết
NL
12 tháng 3 2021 lúc 13:21

\(f\left(-1\right)=-4\Rightarrow-1+a-b+c=-4\)

\(\Rightarrow a-b+c=-3\)

\(f\left(2\right)=5\Rightarrow8+4a+2b+c=5\Rightarrow4a+2b+c=-3\)

\(\Rightarrow3a+3b=0\Rightarrow a=-b\)

\(\Rightarrow a^{2019}=-b^{2019}\Rightarrow a^{2019}+b^{2019}=0\)

\(\Rightarrow A=0\)

Bình luận (0)
LC
Xem chi tiết
LC
31 tháng 10 2019 lúc 23:56

Cho đa thức \(f\left(x\right)\)bậc 3 với hệ số \(x^3\)là số nguyên dương thỏa mãn:

\(f\left(2019\right)=2020;f\left(2020\right)=2021\)

CMR \(f\left(2021\right)-f\left(2018\right)\)là hợp số

Bình luận (0)
 Khách vãng lai đã xóa
H24
31 tháng 10 2019 lúc 23:53

Cho xin cái đề ạ

Bình luận (0)
 Khách vãng lai đã xóa
FV
21 tháng 10 2020 lúc 22:39

hello

Bình luận (0)
 Khách vãng lai đã xóa
VD
Xem chi tiết
AH
27 tháng 12 2023 lúc 23:48

Lời giải:
Áp dụng BĐT $|a|+|b|\geq |a+b|$ ta có:

$|x-2019|+|x-2021|=|x-2019|+|2021-x|\geq |x-2019+2021-x|=2$

$|x-2020|\geq 0$ với mọi $x$

$\Rightarrow A=|x-2019|+|x-2020|+|x-2021|\geq 2+0=2$

Vậy $A_{\min}=2$
Giá trị này đạt được khi: $(x-2019)(2021-x)\geq 0$ và $x-2020=0$

Tức là $x=2020$

Bình luận (0)
TV
Xem chi tiết