Những câu hỏi liên quan
H24
Xem chi tiết
LN
Xem chi tiết
MH
Xem chi tiết
EC
5 tháng 7 2019 lúc 8:50

CM:

Để n + 3/n + 4 tối giản <=> ƯCLN(n + 3; n + 4) \(\in\){1; -1}

Gọi ƯCLN(n + 3;n + 4) = d 

=> n + 3 \(⋮\)d ; n + 4 \(⋮\)d

=> (n + 3) - (n + 4) = -1 \(⋮\)d => d \(\in\){1; -1}

=> \(\frac{n+3}{n+4}\)là p/số tối giản \(\forall\)n

Để \(\frac{n+1}{2n+3}\) tối giản <=> ƯCLN(n + 1;2n + 3) \(\in\){1; -1}

Gọi d là ƯCLN(n + 1;2n + 3}

=> n + 1 \(⋮\)d      => 2(n + 1) \(⋮\)d     => 2n + 2 \(⋮\)d

 => 2n + 3 \(⋮\)d

=> (2n + 2) - (2n + 3) = -1 \(⋮\)d => d \(\in\){1; -1}

=> \(\frac{n+1}{2n+3}\)tối giản \(\forall\)n

Bình luận (0)
XO
5 tháng 7 2019 lúc 9:01

a) Gọi ƯCLN(n+3,n+4) = d

=> \(\hept{\begin{cases}n+3⋮d\\n+4⋮d\end{cases}}\)=> \(\left(n+4\right)-\left(m+3\right)⋮d\)=> \(n+4-n-3⋮d\)

=> \(1⋮d\)

=> \(d=1\)

=> \(\frac{n+3}{n+4}\)là phân số tối giản

b) Gọi ƯCLN(n + 1,2n + 3) = d

=> \(\hept{\begin{cases}n+1⋮d\\2n+3⋮d\end{cases}}\)=> \(\hept{\begin{cases}2\left(n+1\right)⋮d\\2n+3⋮d\end{cases}}\)=> \(\hept{\begin{cases}2n+2⋮d\\2n+3⋮d\end{cases}}\)

=> \(\left(2n+3\right)-\left(2n+2\right)⋮d\)

=> \(2n+3-2n-2\)

=> \(1⋮d\)

=> \(d=1\)

=>  \(\frac{n+1}{2n+3}\)là phân số tối giản

Bình luận (0)
CT
Xem chi tiết
NV
Xem chi tiết
DH
4 tháng 3 2022 lúc 19:05

Trả lời;

undefined

Bình luận (0)
 Khách vãng lai đã xóa
NV
4 tháng 3 2022 lúc 18:00

mình cho 3 tick

 

Bình luận (0)
VN
Xem chi tiết
NT
19 tháng 8 2023 lúc 21:54

a: Gọi d=ƯCLN(2n+7;2n+3)

=>2n+7 chia hết cho d và 2n+3 chia hết cho d

=>2n+7-2n-3 chia hết cho d

=>4 chia hết cho d

mà 2n+7 lẻ

nên d=1

=>PSTG

b: Gọi d=ƯCLN(6n+5;8n+7)

=>4(6n+5)-3(8n+7) chia hết cho d

=>-1 chia hết cho d

=>d=1

=>PSTG

 

Bình luận (0)
NL
28 tháng 2 2024 lúc 19:38

1.    a. Tính :

1.    a. Tính :

Bình luận (0)
KN
Xem chi tiết
HY
Xem chi tiết
H24
Xem chi tiết
TH
14 tháng 3 2023 lúc 11:25

Không có mô tả.

Bình luận (0)
TT
Xem chi tiết