Cho a và b thuộc Z; b>0;
so sánh 2 số hữu tỉ a/b và a+2001/b+2001
Cho a thuộc Z+,b thuộc Z-;hãy so sánh IaI và IbI trong các trường hợp
a)a+b thuộc Z+
b)a+b thuộc Z-
Cho a thuộc Z+,b thuộc Z-,hãy so sánh IaI và IbI trong các trường hợp
a)a+b thuộc Z
b)a+b không thuộc Z
CHO A THUỘC Z+, B THUỘC Z_ HÃY SO SÁNH [A] VÀ [B] TRONG CÁC TRƯỜNG HỢP:
A) A+B THUỘC Z+
B) A+B THUỘC Z-
a, A+B thuộc Z+ vậy A>B => |A| > |B|
b, A+B thuộc Z- vậy |A| < |B|
Cho a thuộc Z+; bthuộc Z-;hãy so sánh |b| và |a| trong các trườg hợp
A) a+b ko thuộc Z
B) a+ b thuộc Z
Cho a thuộc Z+;b thuộc Z-;hãy so sánh |a| và |b| trg các trườg hợp:
A) a+b ko thuộc Z
B) a+b thuộc Z
Z+: tập hợp số nguyên dương
Z-: tập hợp số nguyên âm
cái này đầu tiên mình thấy đó
a thuộc số nguyên dương, b thuộc số nguyên âm
a) mà a+b ko thuộc z suy ra
Cho a thuộc Z, b thuộc Z, b>0, n thuộc N*
Hãy so sánh số hữu tỉ a/b và a+n/b+n
mik ko biết làm nhưng bạn có thể vào câu hỏi tương tự
Ta có : \(\frac{a}{b}< \frac{a+n}{b+n}\Leftrightarrow a(b+n)< b(a+n)\)
\(\Leftrightarrow ab+an< ab+bn\Leftrightarrow a< b\)vì n > 0
Như vậy : \(\frac{a}{b}< \frac{a+n}{b+n}\Leftrightarrow a< b\)
Ta lại có : \(\frac{a}{b}>\frac{a+n}{b+n}\Leftrightarrow a(b+n)>b(a+n)\)
\(\Leftrightarrow ab+an>ab+bn\Leftrightarrow an>bn\Leftrightarrow a>b\)
Như vậy : \(\frac{a}{b}>\frac{a+n}{b+n}\Leftrightarrow a>b\)
Ta có:a/b=a.(b+n)
=a.b+a.n/b.(b+n)
a+n/b+n=(a+n).b/(b+n).b
=a.b+b.n/b.(b+n)
-->a/b<a+n/b+n
Cho a thuộc Z, b thuộc Z, b>0, n thuộc N*
Hãy so sánh số hữu tỉ a/b và (a+n)/(b+n)
Lời giải:
Xét $\frac{a}{b}-\frac{a+n}{b+n}=\frac{a(b+n)-b(a+n)}{b(b+n)}=\frac{n(a-b)}{b(b+n)}$
Nếu $a>b$ thì ${a}{b}-\frac{a+n}{b+n}=\frac{n(a-b)}{b(b+n)}>0$
$\Rightarrow {a}{b}>\frac{a+n}{b+n}$
Nếu $a=b$ thì ${a}{b}-\frac{a+n}{b+n}=\frac{n(a-b)}{b(b+n)}=0$
$\Rightarrow {a}{b}=\frac{a+n}{b+n}$
Nếu $a<b$ thì ${a}{b}-\frac{a+n}{b+n}=\frac{n(a-b)}{b(b+n)}<0$
$\Rightarrow {a}{b}<\frac{a+n}{b+n}$
cho a thuộc Z, b thuộc Z, b>0, n thuộc N*
Hãy so sánh 2 số hữu tỉ a/b và a+n/b+n
theo minh thi
neu a<b thi ta co a(b+n) va b(a+n)
ab+an và ab + bn
vi a<b nen a(b+n)<b(a+n) suy ra a/b < a+n/b+n
neu a>b thi ta co a(b+n) va b(a+n)
ab+an va ab+bn
vì a>b nen a(b+n)>b(a+n) suy ra a/b>a+n/b+n
neu a=b thi a(b+n) và b(a+n)
ab+an và ab+ bn
vì a=b nên a(b+n) = b(a+n) suy ra a/b=a+n/b+n
Cho a thuộc Z , b thuộc Z
và x = a- b
tìm số đối của x
Cho các tập hợp A={3k+1|k thuộc z} B={6m+4|m thuộc z} khi đó A và B có mối liên hệ gì
giả sử \(\text{x ∈ B, x = 6m + 4, m ∈ Z}\) . Khi đó ta có thể viết \(\text{ x = 3(2m + 1) + 1}\)
Đặt \(\text{k = 2m + 1}\) thì thay \(\text{ k ∈ Z}\) vào ta có \(\text{x = 3k + 1}\Rightarrow\text{x ∈ A}\)
Như vậy \(\text{x ∈ B ⇒ x ∈ A}\)
Hay \(\text{B ⊂ A}\)