Những câu hỏi liên quan
ND
Xem chi tiết
HK
9 tháng 4 2019 lúc 6:12

Áp dụng bđt Cô-si cho 2 số dương, ta có

\(A=xyz\le\frac{\left(x+y\right)^2z}{4}=\frac{\left(x+y\right)\left(100-z\right)z}{4}\) (Vì\(x+y+z=100\)

\(A\le\frac{\left(x+y\right)3\left(100-z\right)2z}{24}\le\frac{\left(x+y\right)\left(300-3z+2z\right)^2}{24}=\frac{\left(x+y\right)\left(300-z\right)^2}{96}\)

Mà \(z\ge60\) \(x+y+z=100\Rightarrow x+y\le40\)

\(\Rightarrow A\le\frac{40\left(300-60\right)^2}{96}=24000\) 

Dấu '=' xảy ra khi \(z=60;x=y=40\)

Bình luận (2)
HK
9 tháng 4 2019 lúc 6:13

dòng cuối mình viết lộn nha \(x=y=20\) chứ

Bình luận (0)
ND
9 tháng 4 2019 lúc 20:16

vs lại bạn viết nhầm, đáng ra phải là \(A\le2400\)mới đúng

nhưng thôi mk cx cứ tk cho bn nhé

cảm ơn bạn nhiều

Bình luận (0)
NC
Xem chi tiết
QH
Xem chi tiết
GP
Xem chi tiết
H24
2 tháng 7 2021 lúc 11:02

Áp dụng bất đẳng thức Co-si cho hai số không âm ta có: 

\(x+y\ge2\sqrt{xy}\)

\(y+z\ge2\sqrt{yz}\)

\(z+x\ge2\sqrt{zx}\)

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)\ge8\sqrt{\left(xyz\right)^2}=8xyz\)

Dấu "=" <=> x = y = z. (đpcm)

Bình luận (0)
 Khách vãng lai đã xóa
NT
2 tháng 7 2021 lúc 11:04
Câu trả lời bằng hình

Bài tập Tất cả

Bình luận (0)
 Khách vãng lai đã xóa
LD
2 tháng 7 2021 lúc 11:07

Áp dụng bất đẳng thức AM-GM ta có :

\(x+y\ge2\sqrt{xy};y+z\ge2\sqrt{yz};z+x\ge2\sqrt{zx}\)

Nhân vế với vế các bđt trên ta được bđt cần cm 

Đẳng thức xảy ra <=> x = y = z :v

Bình luận (0)
 Khách vãng lai đã xóa
MN
Xem chi tiết
AN
22 tháng 10 2016 lúc 18:17

Ta có

x + y \(\ge\)xy(4 - x - y)

<=> x + y + xy2 + yx2 - 4xy \(\ge0\)

 <=> \(\left(x-2xy+xy^2\right)+\left(y-2xy+yx^2\right)\ge0\)

\(\Leftrightarrow\left(\sqrt{x}-y\sqrt{x}\right)^2+\left(\sqrt{y}-x\sqrt{y}\right)^2\ge0\)

=> ĐPCM

Bình luận (0)
TM
Xem chi tiết
AH
15 tháng 12 2022 lúc 19:45

Lời giải:

Áp dụng TCDTSBN:

$\frac{x}{y}=\frac{y}{z}=\frac{z}{x}=\frac{x+y+z}{y+z+x}=1$

$\Rightarrow x=y; y=z; z=x\Rightarrow x=y=z$

Khi đó:

$|x+y|=|z-1|$

$\Leftrightarrow |2x|=|x-1|$

$\Rightarrow 2x=x-1$ hoặc $2x=-(x-1)$

$\Rightarrow x=-1$ hoặc $x=\frac{1}{3}$ (đều thỏa mãn)

Vậy $(x,y,z)=(-1,-1,-1)$ hoặc $(\frac{1}{3}, \frac{1}{3}, \frac{1}{3})$

Bình luận (0)
NL
Xem chi tiết
AM
29 tháng 6 2015 lúc 23:12

Áp dụng BĐT cô-si cho 2 số dương ta có:

\(x+y\ge2\sqrt{xy}\)

\(y+z\ge2\sqrt{yz}\)

\(x+z\ge2\sqrt{xz}\)

=>\(\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge2\sqrt{xy}.2\sqrt{yz}.2\sqrt{xz}=8\sqrt{x^2y^2z^2}=8xyz\)

Dấu"=" xảy ra <=>x=y y=z z=x=>x=y=z

=>\(\left(x+y\right)\left(y+z\right)\left(x+z\right)=8xyz\Leftrightarrow x=y=z\)(ĐPCM)
 

Bình luận (0)
KY
19 tháng 9 2019 lúc 16:47

Áp dụng BĐT Cauchy cho 2 số không âm, ta được:

\(\frac{x+y}{2}\ge\sqrt{xy}\Rightarrow x+y\ge2\sqrt{xy}\)

\(\frac{y+z}{2}\ge\sqrt{yz}\Rightarrow y+z\ge2\sqrt{yz}\)

\(\frac{x+z}{2}\ge\sqrt{xz}\Rightarrow x+z\ge2\sqrt{xz}\)

\(\Rightarrow\left(x+y\right)\left(y+z\right)\left(x+z\right)\ge8\sqrt{\left(xyz\right)^2}=8xyz\)(Vì x,y,z > 0)

Bình luận (0)
TT
Xem chi tiết
XX
Xem chi tiết
NL
12 tháng 4 2021 lúc 20:37

\(P=\sqrt{x\left(x+y+z\right)+yz}+\sqrt{y\left(x+y+z\right)+xz}+\sqrt{z\left(x+y+z\right)+xy}\)

\(P=\sqrt{\left(x+y\right)\left(x+z\right)}+\sqrt{\left(x+y\right)\left(y+z\right)}+\sqrt{\left(x+z\right)\left(y+z\right)}\)

\(P\le\dfrac{1}{2}\left(x+y+x+z\right)+\dfrac{1}{2}\left(x+y+y+z\right)+\dfrac{1}{2}\left(x+z+y+z\right)\)

\(P\le2\left(x+y+z\right)=2\)

\(P_{max}=2\) khi \(x=y=z=\dfrac{1}{3}\)

Bình luận (0)