Chúng minh : Cới mọi số tự nhiên n, ta luôn có 15n + 1 và 20n + 3 nguyên tố cùng nhau.
Chúng minh : Cới mọi số tự nhiên n, ta luôn có 15n + 1 và 20n + 3 nguyên tố cùng nhau.
Chúng minh : Với mọi số tự nhiên n, ta luôn có 15n + 1 và 20n + 3 nguyên tố cùng nhau.
Chứng minh rằng : với mọi số tự nhiên n thì 15n + 1 và 20n + 3 là số nguyên tố cùng nhau
Bài này dễ nhưng trình bày hơi dài
1. Cho a =5n +3 và 6n+ 1 là hai số tự nhiên không nguyên tố cùng nhau. Tìm ước chung lớn nhất của 2 số này. 2. (Ams 2015) Chứng minh với mọi số tự nhiên n ta luôn có hai số A = 4n + 3 và B = 5n+ 4 là hai số nguyên tố cùng nhau. 3.Chứng minh rằng với mọi số tự nhiên n ta có hai số 2n + 1 và 6n + 5 là nguyên tố cùng nhau. 4. Chứng minh rằng 2n + 5 và 4n + 12 là hai số nguyên tố cùng nhau với mọi số tự nhiên n 5. Chứng minh nếu (a; b) = 1 thì (5a + 3b; 13a+8b) = 1.
1. Đặt \(ƯCLN\left(5n+3,6n+1\right)=d\) với \(d\ne1\)
\(\Rightarrow\left\{{}\begin{matrix}5n+3⋮d\\6n+1⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}30n+18⋮d\\30n+5⋮d\end{matrix}\right.\)
\(\Rightarrow13⋮d\)
\(\Rightarrow d\in\left\{1,13\right\}\)
Nhưng vì \(d\ne1\) nên \(d=13\). Vậy \(ƯCLN\left(5n+3,6n+1\right)=13\)
2. Gọi \(ƯCLN\left(4n+3,5n+4\right)=d\)
\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\5n+4⋮d\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}20n+15⋮d\\20n+16⋮d\end{matrix}\right.\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\)
Vậy \(ƯCLN\left(4n+3,5n+4\right)=1\) nên 2 số này nguyên tố cùng nhau. (đpcm)
3: Tương tự 2 nhưng khi đó \(d\in\left\{1,2\right\}\). Nhưng vì cả 2 số \(2n+1,6n+5\) đều là số lẻ nên chúng không thể có ƯC là 2. Vậy \(d=1\)
4. Tương tự 3.
1. Cho a =5n +3 và 6n+ 1 là hai số tự nhiên không nguyên tố cùng nhau. Tìm ước chung lớn nhất của 2 số này. 2. (Ams 2015) Chứng minh với mọi số tự nhiên n ta luôn có hai số A = 4n + 3 và B = 5n+ 4 là hai số nguyên tố cùng nhau. 3.Chứng minh rằng với mọi số tự nhiên n ta có hai số 2n + 1 và 6n + 5 là nguyên tố cùng nhau. 4. Chứng minh rằng 2n + 5 và 4n + 12 là hai số nguyên tố cùng nhau với mọi số tự nhiên n 5. Chứng minh nếu (a; b) = 1 thì (5a + 3b; 13a+8b) = 1.
Bạn nên tách riêng rẽ từng bài ra để đăng cho mọi người quan sát dễ hơn nhé.
1. CMR: hai số n(n+1)/2 và 2n+1 nguyên tố cùng nhau cới mọi số tự nhiên n
Giúp mình với
Chứng tỏ
Với mọi số tự nhiên n, ta luôn có 15n + 1 và 20n + nguyên tố cùng nhau.
Thank trước nha
gọi UCLN(15n+1;20n+3)=d
\(\Rightarrow\)\(15n+1⋮d\) và \(20n+3⋮d\)
4(15n+1)\(⋮\)d và 3(20n+3)\(⋮\)d
\(4\left(15n+1\right)-3\left(20n+3\right)⋮d\)
\(\Rightarrow60n+4-60n-9⋮d\)
Chứng minh rằng 20n+3 và 30n+4 là 2 số nguyên tố cùng nhau với n là mọi số tự nhiên .
Tớ sẽ tic k đúng cho bạn trả lời hay
Gọi \(d=ƯCLN\left(20n+3;30n+4\right)\)
Ta có: \(20n+3\) chia hết cho \(d\) nên \(3\left(20n+3\right)\) chia hết cho \(d\)
và \(30n+4\)chia hết cho \(d\) nên \(2\left(30n+4\right)\) chia hết cho \(d\)
Do đó: \(\left[3\left(20n+3\right)-2\left(30n+4\right)\right]\) chia hết cho \(d\)
\(\Leftrightarrow\left(60n+9-60n-8\right)\) chia hết cho \(d\)
\(\Leftrightarrow1\) chia hết cho \(d\) \(\Rightarrow d=1\)
Vậy, \(20n+3\) và \(30n+4\) nguyên tố cùng nhau với \(n\in N\)
Chứng tỏ rằng với mở mọi số tự nhiên n ta luôn có số 4n + 3 và số 6n + 5 là hai số nguyên tố cùng nhau?
tink nhé
gọi ƯCLN(4n+3;6n+5)=k
=>4n+3 chia hết cho k | =>3(4n+3) chia hết cho k
6n+5 chia hết cho k | =>2(6n+5) chia hết cho k
=>12n+9 chia hết cho k
=>12n+10 chia hết cho k
=>(12n+10)-(12n+9) chia hết cho k
=>1chia hết cho k =>k=1
=>đpcm
chúc bạn học tốt
4n + 3 và số 6n + 5 là hai số nguyên tố cùng nhau?
goi UCLN(4n+3,6n+5)=d
=>4n+3 chia hết cho d=>24n+18 chia hết cho d
=>6n+5 chia hết cho d=>24n+20 chia hết cho d
=>(24n+20)-(24n+18) chia hết cho d
=>2 chia hết cho d
mà 2 chia hết cho 1;2
=>d=1;2
.....
đang ban bn làm tiếp nhé
chứng minh rằng với mọi số tự nhiên n t luôn có (n+1) (n+3) (n+5)