Bài 6: Tìm số nguyên tố b sao
cho b + 10, b + 8, b + 12, b + 14
đều là những số nguyên tố
Bài tập : Tìm số nguyên tố p sao cho :
a, p + 10 và p + 20 đều là số nguyên tố
b, p + 2 ; p + 6 ; p + 8 ; p + 14 đều là các số nguyên tố
a, Ta có: p = 2 => p + 10 = 12 là hợp số
p = 3 => p + 10 = 13
p + 20 = 23
Vậy p = 3 thỏa mãn yêu cầu
Giả sử p > 3 thì p sẽ có dạng:
p = 3k + 1 hoặc p = 3k + 2
Với p = 3k + 1 thì p + 20 = 3k + 1 + 20 = 3k + 21 \(⋮\)3
=> p + 20 là hợp số
Với p = 3k + 2 thì p + 10 = 3k + 2 + 10 = 3k + 12 \(⋮\)3
=> p + 10 là hợp số
Do đó: với p = 3 thỏa mãn yêu cầu đề bài
b, Ta có: p = 2 => p + 2 = 4 là hợp số
p = 3 => p + 6 = 9 là hợp số
p = 5 => p + 2 = 7
p + 6 = 11
p + 8 = 13
p + 14 = 19
Vậy p = 5 thỏa mãn
Giả sử p > 5 thì p sẽ có dạng:
p = 5k + 1; p = 5k + 2; p = 5k + 3; p = 5k + 4
Với p = 5k + 1 thì: p + 14 = 5k + 1 + 14 = 5k + 15 \(⋮\)5
=> p + 14 là hợp số
Với p = 5k + 2 thì: p + 8 = 5k + 2 + 8 = 5k + 10 \(⋮\)5
=> p + 8 là hợp số
Với p = 5k + 3 thì: p + 2 = 5k + 3 + 2 = 5k + 5 \(⋮\)5
=> p + 2 là hợp số
Với p = 5k + 4 thì: p + 6 = 5k + 4 + 6 = 5k + 10 \(⋮\)5
=> p + 6 là hợp số
Do đó: với p = 5 thỏa mãn yêu cầu bài toán
Giải dùm với nghen mấy bạn !
1) Tìm số nguyên tố b sao cho :
a) b + 10 và b + 14 đều là số nguyên tố
b) b + 2 ; b + 6 và b + 8 đều là số nguyên tố
b. Tìm số nguyên tố p sao cho p + 6, p + 14, p + 12 và p + 8 đều là các số nguyên tố.
p=5
vì 5+6=11 là số nguyên tố
5+14=19 là số nguyên tố
5+12=17 là số nguyên tố
5+8=13 là số nguyên tố
tk nha
Bài 1:tìm số nguyên tố p sao cho
a)p+10 và p+20 đều là các số nguyên tố
b) p+2,p+6,p+8,p+14 đều là các số nguyên tố
Bài 2:a)Tìm các số nguyên x ,y.Sao cho(2x+1)(y-5)=12
b)Tìm số tự nhiên sao cho 4n-5 chia hết cho 2n-1
c)Tìm tất cả các số B=62xy427,biết rằng số B chia hế cho 99
Bài 1:a)Vì p là số nguyên tố nên p=2,3,5,7,...
-Với p=2 thì p+10=12(hợp số)\(\rightarrow\)loại
-Với p=3 thì p+10=13, p+20=23 (số nguyên tố)\(\rightarrow\)chọn
-Với p>3 và p là số nguyên tố nên p không chia hết cho 3;p+10,p+20>3 nên:
Nếu p=3k+1 thì p+20=3k+21\(⋮\)3(hợp số)\(\rightarrow\)loại
Nếu p=3k+2 thì p+10=3k+12\(⋮\)3(hợp số)\(\rightarrow\)loại
Vậy p=3 là giá trị cần tìm
Còn lại bạn cứ tiếp tục nhé
Tìm số tự nhiên k sao cho :
a) 7k là số nguyên tố;
b) k, k+6, k+8, k+12, k+14 đều là số nguyên tố
a, Với k ≥ 2 thì 7k có ít nhất 3 ước là 1,7,7k nên 7k là hợp số ( không thỏa mãn).
Với k = 1 thì 7k = 7 là số nguyên tố.
Vậy k = 1.
b, k chia cho 5 có thể dư 0,1,2,3,4.
Với k chia cho 5 dư 1 thì k+14 ⋮ 5 và k+14 > 5 nên k+14 là hợp số ( loại).
Với k chia cho 5 dư 2 thì k+8 ⋮ 5 và k+8 > 5 nên k+8 là hợp số ( loại).
Với k chia cho 5 dư 3 thì k+12 ⋮ 5 và k+12 > 5 nên k+12 là hợp số ( loại).
Với k chia cho 5 dư 4 thì k+6 ⋮ 5 và k+6 > 5 nên k+6 là hợp số ( loại).
Với k chia hết cho 5 và k > 5 thì k là hợp số (loại )
Với k = 5. Thử thấy 5,11,13,17,19 đều là số nguyên tố.
Vậy k = 5.
Tìm các số nguyên tố P sao cho sao cho các số sau đều là số nguyên tố:
a, P+10 và P+14
b, P+8 và P+10
c, P+2, P+8, P+12, P+14
d, P+6, P+8, P+12, P+14
xét p = 2 =>p+10 là hợp số =>ko tm
xét p = 3=>p+10=13,p+14=17 tm
xét p>3 => p=3k+1,p=3k+2
- nếu p = 3k+1 thì p+14 = 3k+15 chia hết cho 3 mà 3k+1>3=>p=3k+1 ko tm
- nếu p=3k+2 thì p+10 = 3k+12 chia hết cho 3 mà 3k+2>3=>p=3k+2 ko tm
a) P+10 và P+14
+ Nếu P=2=> P+10=12; P+14=16(loại)
- Nếu P=3=> P+10=13; P+14=17(tm)
Nếu P>3=> P có dạng 3k;3k+1;3k+2
+Với P=3k mà P>3=> k>1=> P là hợp số ( loại)
+Với P=3k+1=> P+14=3k+1+14=3k+15 chia hết cho 3( loại)
+Với P=3k+2=> P+10=3k+2+10=3k+12 chia hết cho 3( loại)
Vậy với P=3 thì P+10 và P+14 là số nguyên tố.
Các phần còn lại bn làm tương tự
Thấy đúng thì tk nha, thanks nhìu ^_^
Bài 1: Tìm số nguyên tố p sao cho các số sau cũng là số nguyên tố:
a) p + 2, p + 6, p + 8, p + 14.
b) p + 6, p + 8, p + 12, p + 14.
c) p + 4, p + 6, p + 10, p + 12, p+16, p+22.
Bài 2: Chứng minh rằng mọi ước số nguyên tố của: 2018! – 1 đều lớn hơn 2018.
Bài 3: Tìm tất cả các số nguyên tố x, y sao cho: x2 – 6y2 = 1.
Bài 4: Tìm p, q là các số nguyên tố sao cho: p2 = 8q + 1
Bài 5: Cho p là số nguyên tố. Chứng minh rằng (p-1)! không chia hết cho p.
bây giờ mới lên lớp 6 mà tự nhiên cho bài lớp 7
DỄ MÀ!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
hả, sao
tìm số nguyên tố p sao cho
a) p+10 và p+20 đều là các số nguyên tố
B) p+2; p+6; p+8; p+14 đều là các số nguyên tố
Xin lỗi tớ chỉ trả lời đucợ phần a mà cx ko biết có đúng không nhưng tớ học dạng này rồi
a)
+ Nếu p = 2 thì p + 10 = 12 là hợp số
p + 20 = 22 là hợp số
\(\Rightarrow\)Loại
+ Nếu p = 3 thì p + 10 = 13 là Số nguyên tố
p + 20 = 23 là số nguyên tố
\(\Rightarrow\) Chọn
+ Nếu p > 3 thì p có dạng 3k + 1; 3k +2 ( k \(\in\)N* )
- Với p = 3k + 1 thì p + 20 = 3k +1 + 20 = 3k+21. Mà 21 \(⋮\)3 \(\Rightarrow\)21 là hợp số
- Với p = 3k +2 thì p + 10 = 3k + 2 + 10 = 3k + 12. Mà 12 \(⋮\)2,6,3,4 \(\Rightarrow\)12 là hợp số
\(\Rightarrow\) Loại
Vậy, p = 3
Tìm số nguyên tố p sao cho:
a, p+10 và p+14 đều là các số nguyên tố.
b, p+10 và p+20 đều là các số nguyên tố.
c, p+2 ; p+6 ; p+8 và p+14 đều là các số nguyên tố.
ccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccc ccccccccccccccccccccccccccccc
tìm số nguyên tố sao cho
a)p+2,p+10 là số nguyên tố
b)p+10,p+20 là số nguyên tố
c)p+2,p+6,p+8,p+12,p+14 là số nguyên tố
a, p=3
b, p=3
c, p=5
Chúc bạn học giỏi nha!!!
a) Nếu p=3k+1 thì p+2=3k+1+2=3K+3 chia hết cho 3
Nếu p=3k+2 thì p+10=3k+2+10=3k+12 chia hết cho 3
Do đó p=3
b) Xét 3k+1 và 3k+2 như phần trên
Đáp số: p=3
c) Nếu p=5k+1 thì p+14=3k+1+14=3k+15 chia hết cho 3, là hợp số
p=5k+2 thì p+8=5k+2+8=5k+10, chia hết cho 5 nên là hợp số
p=5k+3 thì p+2=5k+3+2=5k+5 chia hết cho 5, là hợp số
Do đó, p là số nguyên tố nhỏ hơn hoặc = 5
p ko thể là 2 vì p+2 là hợp số
p ko là 3 vì 3+6=9, là hợp số
Với p=5 thì tất cả nguyên tố