Tìm a ϵ N để:
a) a + 10 ⋮ a + 1
b) 2a + 6 ⋮ a + 2
Tìm n để:a) n+5 chia hết n+1b) 3n+2 chia hết n-1
a) 3n + 2 chia hết cho n - 1
⇒⇒ 3n - 3 + 5 chia hết cho n - 1
⇒⇒ 3(n - 1) + 5 chia hết cho n - 1
⇒⇒ 5 chia hết cho n - 1
⇒⇒ n - 1 ∈∈ Ư(5) = {-1; 1; -5; 5}
⇒⇒ n ∈∈ {0; 2; -4; 6}
b) 3n + 24 chia hết cho n - 4
⇒⇒ 3n - 12 + 36 chia hết cho n - 4
⇒⇒ 3(n - 4) + 36 chia hết cho n - 4
⇒⇒ 36 chia hết cho n - 4
⇒⇒ n - 4 ∈∈ Ư(36) = {-1; 1; -2; 2; -3; 3; -4; 4; -6; 6; -9; 9; -12; 12; -18; 18; -36; 36}
⇒⇒ n ∈∈ {-3; 5; 4; 6; -1; 7; 0; 8; -2; 10; -5; 13; -8; 16; -14; 22; -32; 40}
c) 3n + 5 chia hết cho n + 1
⇒⇒ 3n + 3 + 2 chia hết cho n + 1
⇒⇒ 3(n + 1) + 2 chia hết cho n + 1
⇒⇒ 2 chia hết cho n + 1
⇒⇒ n + 1 ∈∈ Ư(2) = {-1; 1; -2; 2}
⇒⇒ n ∈∈ {0; 2; -1; 3}
5555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555555
\(n+5⋮n+1\)
\(n+1⋮n+1\)
\(\Rightarrow\left(n+5\right)-\left(n+1\right)⋮n+1\)
\(4⋮n+1\)
\(\Rightarrow n+1\in\text{Ư}\left(4\right)=\left\{1;-1;2;-2;4;-4\right\}\)
\(\Rightarrow n\in\left\{0;-2;1;-3;3;-5\right\}\)
tìm n ϵ N biết
a) 2n+29⋮2n+1
b)5n+38⋮n+2
bn nào làm đúng mk tim cho
a) 2n + 29 \(⋮\) 2n + 1
\(\Rightarrow\) 2n + 29 - (2n + 1) \(⋮\) 2n + 1
\(\Rightarrow\) 28 \(⋮\) 2n + 1
\(\Rightarrow\) 2n + 1 \(\in\) Ư(28) = {1 ; 2 ; 4 ; 7 ; 14 ; 28} , mà n \(\in\) N
\(\Rightarrow\) n \(\in\) {0 ; 3}
Vậy n \(\in\) {0 ; 3}
b) 5n + 38 \(⋮\) n + 2
\(\Rightarrow\) 5n + 38 - 5(n + 2) \(⋮\) n + 2
\(\Rightarrow\) 28 \(⋮\) n + 2
\(\Rightarrow\) n + 2 \(\in\) Ư(28) = {1 ; 2 ; 4 ; 7 ; 14 ; 28}, mà n \(\in\) N
\(\Rightarrow\) n \(\in\) {0 ; 2 ; 5 ; 12 ; 26}
Vậy n \(\in\) {0 ; 2 ; 5 ; 12 ; 26}
a\(^2\).(a+1)+2a.(a+1) chia hết cho 6 với a ϵ Z
\(a^2\left(a+1\right)+2a\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\) là tích 3 số tự nhiên liên tiếp nên có một số chia hết cho 2 và một số chia hết cho 3
\(\Rightarrow a^2\left(a+1\right)+2a\left(a+1\right)=a\left(a+1\right)\left(a+2\right)⋮2.3\)
\(\Rightarrow a^2\left(a+1\right)+2a\left(a+1\right)⋮6\forall a\in Z\)
Cho biểu thức P=(\(\dfrac{2a}{a+3}-\dfrac{3}{3-a}-\dfrac{2a^2+3}{a^2-9}\) ) : \(\dfrac{a+1}{a-3}\)
a) Tìm điều kiện của a để P xác định
b) Rút gọn P
c) Tính P khi giá trị tuyệt đối của a=2
d) Tìm a ϵ Z để P ϵ Z
Giúp em giải bài này vs ạ em đag cần lời giải gấp em xin c.ơn trước ạ
a: ĐKXĐ: a<>3; a<>-3; a<>-1
b: \(P=\dfrac{2a^2-3a+3a+9-2a^2-3}{\left(a-3\right)\left(a+3\right)}\cdot\dfrac{a-3}{a+1}\)
\(=\dfrac{6}{\left(a+3\right)\left(a+1\right)}\)
c: |a|=2
=>a=2 hoặc a=-2
Khi a=-2 thì \(P=\dfrac{6}{\left(-2+3\right)\left(-2+1\right)}=-6\)
Khi a=2 thì \(P=\dfrac{6}{\left(2+3\right)\left(2+1\right)}=\dfrac{6}{5\cdot3}=\dfrac{2}{5}\)
tìm a,b ϵ N thỏa mãn: 10↑a + 168 =b↑2
a) Cho A = 3 + 32 + 33 + 34 +… + 3100
Tìm số tự nhiên n để: 2A + 3 = 34n+1
b) Tìm các số nguyên tố x, y thỏa mãn: x2 + 1 = 6y2 + 2
a) Cho A = 3 + 32 + 33 + 34 +… + 3100
Tìm số tự nhiên n để: 2A + 3 = 34n+1
b) Tìm các số nguyên tố x, y thỏa mãn: x2 + 1 = 6y2 + 2
Tìm n ϵ N để A ϵ Z : A \(\frac{n+10}{2n+8}\)
Ta có
A \(\in\)Z <=> n+10 chia hết cho 2n+8
<=> 2n+20 chia hết cho 2n+8
<=> 2n+20-(2n+8) chia hết cho 2n+8
<=> 12 chia hết cho 2n+8
<=> 2n+8 \(\in\) Ư(12)
Mà n là số tự nhiên nên \(2n+8\ge8\)
Ta có \(Ư_{\left(12\right)}=\left(1;2;3;4;12;-1;-2;-3;-4;-6;-12\right)\)
=> 2n+8=12
=> 2n=4
=>n=2
Vậy số cần tìm là 2
Cho A= 8:(n-2) tìm n ϵ N để A ϵ N
A ∈ N => 8 : (n - 2) ∈ N => (n - 2) ∈ Ư(8) = {1; 2; 4; 8}; (n - 2) > 0
=> ta có bảng:
n - 2 | 1 | 2 | 4 | 8 |
n | 3 | 4 | 6 | 10 |
Vậy n ∈ {3; 4; 6; 10}
Vì AϵN nên 8 : (n-2 ) ϵ N
=> n-2 ϵ Ư(8) ϵ{1 ; 2 ; 4; 8 } ; ( n-2 ) > 0
xét các th
n-2 | 2 | 8 | 4 | 1 |
n | 4 | 10 | 6 | 3 |
Cho A = 8 : ( n - 2 )
Tìm n ϵ N để A ϵ N
Để A là số tự nhiên thì \(\left\{{}\begin{matrix}8⋮n-2\\n>2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}n-2\in\left\{1;-1;2;-2;4;-4;8;-8\right\}\\n>2\end{matrix}\right.\)
hay \(n\in\left\{3;4;6;10\right\}\)
`=> n - 2 in Ư(8)`
Ta có: `n in NN => n - 2 >= -2`.
`-> n - 2 in {-1, -2, 1, 2, 4, 8}`
`=> n - 2 in {1, 0, 3, 4, 6, 10}`.