Những câu hỏi liên quan
PD
Xem chi tiết
EC
13 tháng 7 2020 lúc 9:12

9x2 + 3y2 + 6xy - 6x + 2y - 35 = 0

<=> (9x2 + 6xy + y2) - 2(3x + y) + 1 + 2(y2 + 2y + 1) - 37 = 0

<=> (3x + y - 1)2 = 37 - 2(y + 1)2

Ta có: (3x + y - 1)2 \(\ge\)0 => 37 - 2(y + 1)2 \(\ge\)0

=> (y + 1)2 \(\le\)37/2

Do y nguyên và (y + 1)2 là số chính phương

=> (y + 1)2 \(\in\){0; 1; 4; 9; 16}

=> y + 1 \(\in\){0; 1; -1; 2; -2; 3; -3; 4; -4}

Lập bảng 

y + 1 0 1 -1 2 -2 3 -3 4 -4
 y -1 0 -2 1 -3 2 -4 3 -5

Với y = -1 => (3x - 1 - 1)2 = 37 - 2(-1 + 1)2

<=> (3x - 2)2 = 37 

Do x nguyên và (3x - 2)2 là số chính phương

mà 37 là số nguyên tố => ko có giá trị y tm

.... (tự thay y vào)

bài trc sai

Bình luận (0)
 Khách vãng lai đã xóa
TK
3 tháng 6 2017 lúc 8:44

yx=98c99-23yx=0+35x6z6-y=a+b=6+2-3+35-9=31

Bình luận (0)
NN
13 tháng 7 2020 lúc 7:05

hdyebt7c>ZMX yTbftk 2y5

Bình luận (0)
 Khách vãng lai đã xóa
HD
Xem chi tiết
MG
3 tháng 3 2021 lúc 21:58

x=5

y=3

có thẻ sai

 

Bình luận (0)
H24
Xem chi tiết
NT
2 tháng 3 2023 lúc 23:37

=>3y(2x+1)-10x-5=7

=>(2x+1)(3y-5)=7

=>\(\left(2x+1;3y-5\right)\in\left\{\left(1;7\right);\left(7;1\right)\right\}\)(Vì x,y là số nguyên)

=>\(\left(x,y\right)\in\left\{\left(0;6\right);\left(3;2\right)\right\}\)

Bình luận (0)
DT
Xem chi tiết
NT
Xem chi tiết
H24
26 tháng 3 2019 lúc 12:25

\(12x^2+6xy+3y^2=28\left(x+y\right)\)

\(\Leftrightarrow3y^2+2\left(3x-14\right)y+12x^2-28x=0\)      (1)

Xem (1) là phương trình bậc hai ẩn y thì (1) có nghiệm nguyên khi và chỉ khi \(\Delta'\)là số chính phương

\(\Delta'=\left(3x-14\right)^2-36x^2+84x=k^2\ge0\)

      \(=-27x^2+196=k^2\ge0\Rightarrow27x^2\le196\Rightarrow x^2\le7\)

                                                               \(\Rightarrow x\in\left\{0;\pm1;\pm2\right\}\)

Nếu x = 0 thì y = 0

       x = 1 thì y = 8

       x = -1 thì y = 10

      x = \(\pm2\)thì y \(\notin Z\)

Vậy các cặp số (x;y) thỏa mãn đề bài là : (0;0);(1;8);(-1;10)

Bình luận (0)
PH
Xem chi tiết
TT
Xem chi tiết
AH
6 tháng 7 2024 lúc 18:09

Lời giải:

$6xy-4x+3y=5$

$\Rightarrow 2x(3y-2)+3y=5$

$\Rightarrow 2x(3y-2)+(3y-2)=3$

$\Rightarrow (3y-2)(2x+1)=3$

Với $x,y$ nguyên thì $2x+1, 3y-2$ nguyên. Mà tích của chúng bằng 3 nên ta xét các TH sau:

TH1: $2x+1=1, 3y-2=3\Rightarrow y=\frac{5}{3}$ (loại) 

TH2: $2x+1=-1, 3y-2=-3\Rightarrow y=\frac{-1}{3}$ (loại)

TH3: $2x+1=3, 3y-2=1\Rightarrow x=1; y=1$

TH4: $2x+1=-3, 3y-2=-1\Rightarrow y=\frac{1}{3}$ (loại)

Bình luận (0)
H24
Xem chi tiết
NA
28 tháng 3 2022 lúc 20:49

`x^2-6xy+13y^2=100`

`<=> (x^2-6xy+9y^2)+4y^2=100`

`<=> (x-3y)^2+4y^2=100`

Mà `100=0^2+10^2=6^2+8^2`

`=>` Chia trường hợp giải `x;y`

Kết luận: Vậy `(x;y)=(15;5),(10;0),(-15;-5),(-10;0),(18;4),(17;3),(6;4),(-1;-3),(-6;-4),(1;3),(-18;-4),(-17;-3)`

Bình luận (0)
 Khách vãng lai đã xóa
TT
Xem chi tiết