Những câu hỏi liên quan
NN
Xem chi tiết
NT
4 tháng 4 2022 lúc 21:01

a: \(A=2\left(x+y\right)+3xy\left(x+y\right)+5x^2y^2\left(x+y\right)=0\)

b: \(B=3xy\left(x+y\right)+2x^2y\left(x+y\right)=0\)

Bình luận (0)
H24
20 tháng 12 2023 lúc 19:19

\(\Rightarrow\)A=2(x+y)+3xy(x+y)+5x2y2(x+y)

Thay x+y=0 vào A

\(\Rightarrow\)A=0

Bình luận (0)
LH
Xem chi tiết
OP
24 tháng 7 2018 lúc 18:53

mik ko bít

I don't now

................................

.............

Bình luận (0)
H24
Xem chi tiết
TT
30 tháng 8 2015 lúc 23:13

x^2 + 3xy + 2y^2 =  0 

=> x^2 + xy + 2xy + 2y^2 = 0 

=> x(x+y) + 2y ( x+  y ) = 0 =

=> ( x+  2y)( x + y ) = 0 

=> x = -2y hoặc x = -y 

(+) x = -2y thay vào ta có :

 8y^2 + 6y + 5 = 0 giải ra y => x 

(+) thay x = -y ta có :

2y^2 - 3y + 5 = 0 tương tự 

Bình luận (0)
NV
30 tháng 8 2015 lúc 23:33

Nguyễn Đình Dũng tục tỉu thế

Bình luận (0)
NH
Xem chi tiết
TV
19 tháng 5 2019 lúc 14:08

a/     \(x^2-3xy+2y^2=0\Leftrightarrow(x^2-2xy)-(xy-2y^2)=0.\) \(\Leftrightarrow x\left(x-2y\right)-y\left(x-2y\right)=0\Leftrightarrow\left(x-2y\right)\left(x-y\right)=0.\) \(\Leftrightarrow\orbr{\begin{cases}x=y\\x=2y\end{cases},với..x,y\in R.}\)

  - Với x = y  thay vào phương trình 2x2 - 3xy + 9 = 0 thì được phương trình :  2x2 - 3x2 + 9 = 0  Tức là x2 = 9 Vậy  x = y =3  và  x = y = - 3.

   -  Với x = 2y  Thay vào phương trình 2x2 - 3xy + 9 = 0 được 8y2 - 6y2 + 9 = 0 Tức là 2y2 + 9 = 0 Phương trình vô nghiệm.

Trả lời    x= y = 3   và    x = y = - 3 .

Bình luận (0)
BL
Xem chi tiết
TY
Xem chi tiết
LK
24 tháng 6 2018 lúc 12:34

......................?

mik ko biết

mong bn thông cảm 

nha ................

Bình luận (0)
NH
24 tháng 6 2018 lúc 12:53

a) x2+2y2+2xy-2y+1=0

\(\Leftrightarrow\)(x2+2xy+y2)+(y2-2y+1)=0

\(\Leftrightarrow\)(x+y)2+(y-1)2=0

\(\Leftrightarrow\hept{\begin{cases}x+y=0\\y-1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

Vậy x=-1, y=1

Bình luận (0)
HH
24 tháng 6 2018 lúc 13:31

a/ \(x^2+2y^2+2xy-2y+1=0\)

<=> \(\left(x^2+2xy+y^2\right)+\left(y^2-2y+1\right)=0\)

<=> \(\left(x+y\right)^2+\left(y-1\right)^2=0\)

<=> \(\hept{\begin{cases}\left(x+y\right)^2=0\\\left(y-1\right)^2=0\end{cases}}\)

<=> \(\hept{\begin{cases}x+y=0\\y-1=0\end{cases}}\)

<=> \(\hept{\begin{cases}x=-y\\y=1\end{cases}}\)

<=> \(\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

b/ \(x^2+2y^2+2xy-2x+2=0\)

<=> \(\left(x^2+2xy+y^2\right)+\left(2y-2x+2\right)=0\)

<=> \(\left(x+y\right)^2+2\left(y-x+1\right)=0\)

<=> \(\hept{\begin{cases}\left(x+y\right)^2=0\\2\left(y-x+1\right)=0\end{cases}}\)

<=> \(\hept{\begin{cases}x+y=0\\y-x+1=0\end{cases}}\)

<=> \(\hept{\begin{cases}x+y=0\\y-x=-1\end{cases}}\)

<=> \(\hept{\begin{cases}x+y=0\left(1\right)\\x-y=1\left(2\right)\end{cases}}\)

Trừ (1) và (2)

=> \(2y=-1\)

<=> \(y=-\frac{1}{2}\)

<=> \(x=\frac{1}{2}\)(vì \(x+y=0\)<=> \(x=-y\))

Bình luận (0)
QT
Xem chi tiết
PA
Xem chi tiết
LF
9 tháng 7 2017 lúc 10:27

a)Từ \(x\cdot2y=\dfrac{2x}{y}\Rightarrow2x=x\cdot2y^2\)

Do \(x,y\ne 0\) nên \(2=2y^2\Rightarrow y^2=1\Rightarrow y=\pm1\)

*)Xét \(y=1\Rightarrow3x-2=2x\Rightarrow x=2\)

*)Xét \(y=-1\Rightarrow3x+2=-2x\Rightarrow x=-\dfrac{2}{5}\)

b)\(\left|4x-3\right|+\left|3xy-5\right|=0\)

Dễ thấy: \(\left\{{}\begin{matrix}\left|4x-3\right|\ge0\\\left|3xy-5\right|\ge0\end{matrix}\right.\)

\(\Rightarrow\left|4x-3\right|+\left|3xy-5\right|\ge0\)

Xảy ra khi \(\left\{{}\begin{matrix}\left|4x-3\right|=0\\\left|3xy-5\right|=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}4x-3=0\\3xy-5=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{4}\\3xy-5=0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{3}{4}\\y=\dfrac{20}{9}\end{matrix}\right.\)

Bình luận (0)
HK
Xem chi tiết
TN
15 tháng 9 2021 lúc 14:46

đa thức lớp 5 hả bạm

Bình luận (0)
 Khách vãng lai đã xóa
DS
15 tháng 9 2021 lúc 14:48

đa thức lớp 5 à

Bình luận (0)
 Khách vãng lai đã xóa
HK
15 tháng 9 2021 lúc 14:51

mình ghi sao đề, các bạn ko cần làm đâu

Bình luận (0)
 Khách vãng lai đã xóa