Tính nhanh:7/2+7/6+7/12+7/20+7/30+7/42+7/56+7/72+7/90+7/110
7/2+7/6+7/12+7/20+7/30+7/42+7/56+7/72+7/90+7/110
đây là dạng tính nhanh nào?
làm thế nào
Đặt biểu thức trên là A
\(\Rightarrow A=7x\left(\frac{1}{2}+\frac{1}{6}+\frac{1}{12}+\frac{1}{20}+...+\frac{1}{90}+\frac{1}{110}\right)\)
Đặt biểu thức trong ngoặc là B
\(\Rightarrow B=\frac{1}{1x2}+\frac{1}{2x3}+\frac{1}{3x4}+\frac{1}{4x5}+...+\frac{1}{9x10}+\frac{1}{10x11}\)
Đây là dạng tính tổng các phân số mà mỗi phân số có:
-Tử số là hiệu của hai thừa số ở mẫu
-Mẫu số của phân số liền sau là tích của hai thừa số mà thừa số thứ nhất là thừa số thứ hai ở mẫu của phân số liền trước
\(B=\frac{2-1}{1x2}+\frac{3-2}{2x3}+\frac{4-3}{3x4}+...+\frac{10-9}{9x10}+\frac{11-10}{10x11}\)
\(B=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{9}-\frac{1}{10}+\frac{1}{10}-\frac{1}{11}\)
\(B=1-\frac{1}{11}=\frac{10}{11}\Rightarrow A=\frac{70}{11}\)
\(\frac{7}{2}+\frac{7}{6}+\frac{7}{12}+\frac{7}{20}+\frac{7}{30}+\frac{7}{42}+\frac{7}{56}+\frac{7}{72}+\frac{7}{90}\)
\(\frac{7}{2}+\frac{7}{6}+\frac{7}{12}+\frac{7}{20}+\frac{7}{30}+\frac{7}{42}+\frac{7}{56}+\frac{7}{72}+\frac{7}{90}\)\(\frac{7}{90}\)
=\(\frac{7}{2+6+12+20+30+42+56+72+90}\)
=\(\frac{63}{10}\)
=6.3
Bài 1: A=2/3*7 + 2/7*11 + 2/11*15+ ... +2/99*103 Bài 2: A=7/2 + 7/6 + 7/12 + 7/20 + 7/30 + 7/42 + 7/56 + 7/72 + 7/90 Bài 3: A=505/10*1212 + 505/12*1414 + 505/14*1616 +...+ 505/96*9898 Bài 4: A=2/1*3 - 4/3*5 - 6/5*7 - ... - 20/19*21 Bài 5: A=1 - 5/6 + 7/12 - 9/20 + 11/30 - 13/42 + 15/56 - 17/72 + 19/90 :>
\(1,A=\dfrac{2}{3\cdot7}+\dfrac{2}{7\cdot11}+\dfrac{2}{11\cdot15}+...+\dfrac{2}{99\cdot103}\\ 2A=\dfrac{4}{3\cdot7}+\dfrac{4}{7\cdot11}+\dfrac{4}{11\cdot15}+...+\dfrac{4}{99\cdot103}\\ 2A=\dfrac{1}{3}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{11}+...+\dfrac{1}{99}-\dfrac{1}{103}\\ 2A=\dfrac{1}{3}-\dfrac{1}{103}=\dfrac{100}{309}\\ A=\dfrac{100}{309}\cdot\dfrac{1}{2}=\dfrac{50}{309}\)
\(2,A=\dfrac{7}{2}+\dfrac{7}{6}+\dfrac{7}{12}+\dfrac{7}{20}+\dfrac{7}{30}+\dfrac{7}{42}+\dfrac{7}{56}+\dfrac{7}{72}+\dfrac{7}{90}\\ A=7\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+...+\dfrac{1}{9\cdot10}\right)\\ A=7\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\right)\\ A=7\left(1-\dfrac{1}{10}\right)=7\cdot\dfrac{9}{10}=\dfrac{63}{10}\)
Bài 1:
Ta có: \(A=\dfrac{2}{3\cdot7}+\dfrac{2}{7\cdot11}+\dfrac{2}{11\cdot15}+...+\dfrac{2}{99\cdot103}\)
\(=\dfrac{1}{2}\left(\dfrac{4}{3\cdot7}+\dfrac{4}{7\cdot11}+\dfrac{4}{11\cdot15}+...+\dfrac{4}{99\cdot103}\right)\)
\(=\dfrac{1}{2}\left(\dfrac{1}{3}-\dfrac{1}{103}\right)\)
\(=\dfrac{1}{2}\cdot\dfrac{100}{309}=\dfrac{50}{309}\)
Bài 2:
Ta có: \(A=\dfrac{7}{2}+\dfrac{7}{6}+\dfrac{7}{12}+\dfrac{7}{20}+\dfrac{7}{30}+\dfrac{7}{42}+\dfrac{7}{56}+\dfrac{7}{72}+\dfrac{7}{90}\)
\(=7\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+\dfrac{1}{3\cdot4}+\dfrac{1}{4\cdot5}+\dfrac{1}{5\cdot6}+\dfrac{1}{6\cdot7}+\dfrac{1}{7\cdot8}+\dfrac{1}{8\cdot9}+\dfrac{1}{9\cdot10}\right)\)
\(=7\left(1-\dfrac{1}{10}\right)\)
\(=\dfrac{63}{10}\)
Tính tổng A= 1- 5/6 +7/12 - 9/20 + 11/30 - 13/42 + 15/56 - 17/72 + 19/90 - 21/110 + 23/132 - 25/156
A = 1 - \(\dfrac{5}{6}\)+\(\dfrac{7}{12}\)-\(\dfrac{9}{20}\)+\(\dfrac{11}{30}\)-\(\dfrac{13}{42}\)+\(\dfrac{15}{56}\) - \(\dfrac{17}{72}\)+\(\dfrac{19}{90}\)+\(\dfrac{23}{132}\)-\(\dfrac{25}{156}\)
A = 1 - \(\dfrac{5}{2.3}\)+\(\dfrac{7}{3.4}\)-\(\dfrac{9}{4.5}\)+\(\dfrac{11}{5.6}\)-\(\dfrac{13}{6.7}\)+\(\dfrac{15}{7.8}\)-\(\dfrac{17}{8.9}\)+\(\dfrac{19}{9.10}\)+\(\dfrac{23}{11.12}\)-\(\dfrac{25}{12.13}\)
A = 1 - \(\dfrac{1}{2}-\dfrac{1}{3}\)+\(\dfrac{1}{3}+\dfrac{1}{4}\)-\(\dfrac{1}{4}-\dfrac{1}{5}\)+...+\(\dfrac{1}{11}+\dfrac{1}{12}\)- \(\dfrac{1}{12}-\dfrac{1}{13}\)
A = 1 - \(\dfrac{1}{2}\) - \(\dfrac{1}{13}\)
A = \(\dfrac{1}{2}\) - \(\dfrac{1}{13}\)
A = \(\dfrac{11}{26}\)
a) 3/13 + 7/12 - 10/13 + 5/12 | d) -5/10 + 12/28 - 3/27 - 7/18 + 20/35 |
b) 15/24 - 6/26 + 28/48 - 30/39 + 10/24 | e) 1/56 + 1/72 + 1/90 + 1/110 + 1/132+ 1/156 = |
c) -1/2 + 3/7 - 1/9 - 7/18 + 4/7 = |
Tính nhanh:3/2+7/6+13/12+21/20+31/30+43/42+57/56+73/72
tính A=1-5/6+7/12-9/20+11/30-13/42+15/56-17/72+19/90
Bài 1: Cho tổng
S= 4/3×7 + 4/7×11 + 4/11×15 +...= 664/1995
A, Tìm số hạng cuối cùng của S
B, Tổng S có bao nhiêu số hạng
Bài 2: Tính nhanh
5/6 + 11/12 + 19/20 + 29/30 + 41/42 + 55/56 + 71/72 + 89/90 + 109/110
Tính tổng A= 1-5/6+7/12-9/20+11/30-13/42+15/56-17/72+1/90