Những câu hỏi liên quan
NT
Xem chi tiết
HD
1 tháng 9 2018 lúc 19:40

Bài 1 : Tam giác ABC với trọng tâm G và ba đường trung tuyến là AF, BE, CD.

A B C D E F G

Bài 2 : Tam giác ABC với ba đường cao và trực tâm H.

A B c H

Bài 3 : Tam giác ABC với ba đường phân giác cắt nhau tại \(\text{I}\).

A B C I

Bình luận (0)
H24
Xem chi tiết
QL
Xem chi tiết
KT
17 tháng 9 2023 lúc 22:05

Ta có: I là giao điểm của ba đường phân giác của tam giác ABC. Đồng thời là giao điểm của ba đường trung trực tam giác ABC nên: \(ID \bot BC;IE \bot AC;IF \bot AB\).

Xét tam giác ADB và tam giác ADC có:

     \(\widehat {BAD} = \widehat {CAD}\)(AD là phân giác của góc A);

     AD chung;

     \(\widehat {ADB} = \widehat {ADC}(=90^0)\)(vì \(ID \bot BC\)).

Vậy \(\Delta ADB = \Delta ADC\)(g.c.g). Suy ra: AB = AC ( 2 cạnh tương ứng). (1)

Tương tự ta có: \(\Delta BEA = \Delta BEC\)(g.c.g). Suy ra: BA = BC ( 2 cạnh tương ứng)(2)

Từ (1) và (2) suy ra: AB = BC = AC.

Vậy tam giác ABC đều.

Bình luận (0)
BT
Xem chi tiết
NH
Xem chi tiết
AH
Xem chi tiết
AH
13 tháng 3 2022 lúc 15:54

mọi người trả lời nhanh giúp tôi nha 

 

Bình luận (0)
PN
Xem chi tiết
DD
28 tháng 4 2019 lúc 22:14

bài 1 đề bài có sai ko?

Bình luận (0)
PN
29 tháng 4 2019 lúc 22:08

Đề đúng nha bạn

Bình luận (0)
IS
22 tháng 2 2020 lúc 20:03

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

Bình luận (0)
 Khách vãng lai đã xóa
YB
Xem chi tiết
H24
Xem chi tiết
HL
Xem chi tiết
NT
15 tháng 3 2022 lúc 20:23

1: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

2: Xét ΔADF vuông tại A và ΔEDC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

Do đó: ΔADF=ΔEDC

Suy ra: AF=EC

Xét ΔBFC có BA/AF=BE/EC

nên AE//FC

Bình luận (0)