Những câu hỏi liên quan
H24
Xem chi tiết
VT
24 tháng 10 2019 lúc 17:57

Ta có: \(a\le b+1\le c+2\)

\(\Rightarrow a+b+1+c+2\le3.\left(c+2\right)\)

\(\Rightarrow a+b+c+3\le3c+6.\)

\(a+b+c=1\)

\(\Rightarrow1+3\le3c+6\)

\(\Rightarrow4\le3c+6\)

\(\Rightarrow-2\le3c\)

\(\Rightarrow-\frac{2}{3}\le c.\)

Hay \(c\ge-\frac{2}{3}\)

Dấu " = " xảy ra khi:

\(c=-\frac{2}{3}.\)

Vậy \(MIN_c=-\frac{2}{3}.\)

Chúc bạn học tốt!

Bình luận (0)
 Khách vãng lai đã xóa
TL
24 tháng 10 2019 lúc 17:10

Vì:0≤a≤b+1≤c+2 nên 0≤a+b+1+c+2≤c+2+c+2+c+2

=>0≤4≤3c+6(vì a+b+c=1)

Hay 3c≥-2=>c≥-2/3.

Vậy GTNN của c là:-2/3 khi đó a+b=5/3.

Bình luận (0)
 Khách vãng lai đã xóa
H24
24 tháng 10 2019 lúc 17:13

giúp e vs thầy Nguyễn Việt Lâm,Băng Băng 2k6,HISINOMA KINIMADO,...

Bình luận (0)
 Khách vãng lai đã xóa
DF
Xem chi tiết
HP
2 tháng 1 2021 lúc 16:54

Từ giả thiết \(-2\le a,b,c\le3\) suy ra:

\(\left\{{}\begin{matrix}\left(a+2\right)\left(a-3\right)\le0\\\left(b+2\right)\left(b-3\right)\le0\\\left(c+2\right)\left(c-3\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^2-a-6\le0\\b^2-b-6\le0\\c^2-c-6\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a\ge a^2-6\\b\ge b^2-6\\c\ge c^2-6\end{matrix}\right.\)

\(\Rightarrow M=a+b+c\ge\left(a^2+b^2+c^2\right)-18=4\)

\(min=4\Leftrightarrow\left(a;b;c\right)=\left(2;3;3\right)\) và các hoán vị

Bình luận (1)
H24
Xem chi tiết
TN
21 tháng 5 2017 lúc 18:07

Câu hỏi của Nguyễn Hoàng Kiều Trinh - Toán lớp 9 - Học toán với OnlineMath

Bình luận (0)
NA
Xem chi tiết
NH
Xem chi tiết
H24
Xem chi tiết
NT
24 tháng 2 2017 lúc 18:48

Từ \(a\le b+1\le c+2\Rightarrow a+b+1+c+2\le3\left(c+2\right)\)\(\Rightarrow a+b+c+3\le3c+6\)

Mà a+b+c=1

\(\Rightarrow4\le3c+6\)

\(\Rightarrow-2\le3c\)

\(\Rightarrow c\ge-\frac{2}{3}\)

Dấu ''='' xảy ra khi \(c=\frac{-2}{3}\)

Vậy c nhỏ nhất khi \(c=\frac{-2}{3}\)

Bình luận (0)
NH
Xem chi tiết
PM
Xem chi tiết
NH
Xem chi tiết