Những câu hỏi liên quan
HT
Xem chi tiết
XO
22 tháng 12 2020 lúc 21:19

Ta có a2 + b2 + c2 = 14

=> (a2 + b2 + c2)2 = 196

=> a4 + b4 + c4 + 2a2b2 + 2b2c2 + 2c2a2 = 196

=> a4 + b4 + c4 + 2(a2b2 + b2c2 + c2a2) = 196

Lại có a + b + c = 0

=> (a + b + c)2 = 0

=> a2 + b2 + c2 + 2ab + 2bc + 2ca = 0

=> 2(ab + bc + ca) = -14

=> ab + bc + ca = -7

=> (ab + bc + ca)2 = 49

=> a2b2 + b2c2 + c2a2 + 2ab2c + 2a2bc + 2abc2 = 49

=> a2b2 + b2c2 + c2a2 + 2abc(a + b + c) = 49

=> a2b2 + b2c2 + c2a2 = 49

Khi đó a4 + b4 + c4 + 2(a2b2 + b2c2 + c2a2) = 196

<=> a4 + b4 + c4 + 2.49 = 196

=>  a4 + b4 + c4 + 98 = 196

=> a4 + b4 + c4 = 98

Vậy N = 98

Bình luận (0)
 Khách vãng lai đã xóa
NM
Xem chi tiết
PA
Xem chi tiết
XO
17 tháng 10 2020 lúc 17:56

Ta có a + b + c = 0

=> a + b = -c

=> (a + b)2 = (-c)2

=> a2 + b2 + 2ab = c2

=> a2 + b2 - c2 = -2ab

=> (a2 + b2 - c2)2 = (-2ab)2

=> a4 + b4 + c4 + 2a2b2 - 2a2c2 - 2b2c2 = 4a2b2

=> a4 + b4 + c4 = 2a2b2 + 2b2c2 + 2a2c2

Khi đó a2 + b2 + c2 = 14

<=> (a2 + b2 + c2)2 = 142

=> a4 + b4 + c4 + 2a2b2 + 2b2c2 + 2a2c2 = 196

=> a4 + b4 + c4 + a4 + b4 + c4 = 196 (Vì a4 + b4 + c4 = 2a2b2 + 2b2c2 + 2a2c2)

=> 2(a4 + b4 + c4) = 196

=> a4 + b4 + c4 = 98

Bình luận (0)
 Khách vãng lai đã xóa
LA
Xem chi tiết
BB
Xem chi tiết
NT
9 tháng 2 2021 lúc 12:59

Ta có: a+b+c=0

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)

\(\Leftrightarrow2\left(ab+bc+ac\right)=0-1=-1\)

hay \(ab+bc+ac=-\dfrac{1}{2}\)

\(\Leftrightarrow\left(ab+bc+ac\right)^2=\dfrac{1}{4}\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2ab^2c+2abc^2+2a^2bc=\dfrac{1}{4}\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(b+c+a\right)=\dfrac{1}{4}\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2=\dfrac{1}{4}\)

Ta có: \(M=a^4+b^4+c^4\)

\(\Leftrightarrow M=a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2-2a^2b^2-2a^2c^2-2b^2c^2\)

\(\Leftrightarrow M=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+a^2c^2+b^2c^2\right)\)

\(\Leftrightarrow M=1^2-2\cdot\dfrac{1}{4}=1-\dfrac{1}{2}=\dfrac{1}{2}\)

Vậy: \(M=\dfrac{1}{2}\)

Bình luận (0)
NL
9 tháng 2 2021 lúc 12:57

Ta có : \(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)^2=0\)

\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right)=1\) ( * )

\(\Rightarrow ab+bc+ac=-\dfrac{1}{2}\)

Lại có : \(\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ca\right)^2\) ( suy ra từ * )

\(\Rightarrow a^4+b^4+c^4=2\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{2}\)

Vậy ...

Bình luận (0)
H24
Xem chi tiết
PT
Xem chi tiết
TM
1 tháng 8 2017 lúc 13:08

\(a+b+c=0\Leftrightarrow\left(a+b+c\right)^2=0\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ca\right)=0\)

\(\Leftrightarrow2+2\left(ab+bc+ca\right)=0\Leftrightarrow ab+bc+ca=-1\Rightarrow\left(ab+bc+ca\right)^2=1\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2ab^2c+2abc^2+2a^2bc=1\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc\left(a+b+c\right)=1\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2abc.0=1\)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2=-1\)

Xét \(a^2+b^2+c^2=2\Rightarrow\left(a^2+b^2+c^2\right)^2=4\Leftrightarrow a^4+b^4+c^4+2\left(a^2b^2+b^2c^2+c^2a^2\right)=4\)

\(\Leftrightarrow a^4+b^4+c^4+2\left(-1\right)=4\Leftrightarrow a^4+b^4+c^4=6\)

Bình luận (0)
PT
1 tháng 8 2017 lúc 13:23

bạn ơi nó phải bằng 2 chứ

Bình luận (0)
NT
Xem chi tiết
NT
Xem chi tiết
MT
6 tháng 7 2015 lúc 14:14

lại nhầm lần này đúng

(a+b+c)2=a2+b2+c2+2ac+2bc+2ab

=>02=2+2(ac+bc+ab)

=>ac+bc+ab=2:2=-1

=>(-1)2=a2b2+b2c2+a2c2+2a2bc+2b2ac+2c2ab

(-1)2=a2b2+b2c2+a2c2+2abc(a+b+c)

=>1=a2b2+b2c2+a2c2+2abc.0

=>a2b2+b2c2+a2c2=1

(a2+b2+c2)2=a4+b4+c4+2a2b2+2b2c2+2a2c2

(a2+b2+c2)2=a4+b4+c4+2(a2b2+b2c2+a2c2)

22=a4+b4+c4+2.1

4=a4+b4+c4+2

=>a4+b4+c4=2

Bình luận (0)
TH
5 tháng 8 2018 lúc 22:32

trieu dang   làm sai đoạn cuối rồi

Bình luận (0)