HELP ME: Giải phương trình:
10x^2 +5y^2 - 2xy -38x -6y + 41 = 0
Giải hệ phương trình: \(\hept{\begin{cases}10x^2+5y^2-2xy-38x-6y+41=0\\\sqrt{x^3+xy+6y}-\sqrt{y^3+x^2-1}=2\end{cases}}\)
:))
\(10x^2+5y^2-2xy-38x-6y+41=0\)
\(\Leftrightarrow\left[\left(x-y\right)^2-2\left(x-y\right)+1\right]+\left(9x^2-36x+36\right)+\left(4y^2-6y+4\right)=0\)
\(\Leftrightarrow\left(x-y-1\right)^2+\left(3x-6\right)^2+\left(2y-2\right)^2=0\)
\(\Leftrightarrow x=2;y=1\)
Sao tìm luôn được nghiệm nhỉ :V chả nhẽ phương trình ( 2 ) chỉ để thử nghiệm thôi sao ?
Điều kiện \(\hept{\begin{cases}x^3+xy+6y\ge0\\y^3+x^2-1\ge0\end{cases}}\)
Ta có pt (1) \(\Leftrightarrow10x^2-2x\left(y+19\right)+5y^2-6y+41=0\)
Tính \(\Delta'_x=-49\left(y-1\right)^2\ge0\Leftrightarrow y\ge1\)thay vào (1) ta được x=2 thỏa mãn hệ phương trình
KL: S={(2;1)}
1,Giải hệ \(\hept{\begin{cases}10x^2+5y^2-2xy-38x-6y+41=0\\3x^2-2y^2+5xy-17x-6y+20\end{cases}}\)
2,Cho a,b,c > 0 thỏa mãn \(ab\sqrt{ab}+bc\sqrt{bc}+ca\sqrt{ca}=1\)
Tìm \(P_{min}=\frac{a^6}{a^3+b^3}+\frac{b^6}{b^3+c^3}+\frac{c^6}{c^3+a^3}\)
\(1,\hept{\begin{cases}10x^2+5y^2-2xy-38x-6y+41=0\left(1\right)\\3x^2-2y^2+5xy-17x-6y+20=0\left(2\right)\end{cases}}\)
Giải (1) : \(10x^2+5y^2-2xy-38x-6y+41=0\)
\(\Leftrightarrow10x^2-2x\left(y+19\right)+5y^2-6y+41=0\)
Coi pt trên là pt bậc 2 ẩn x
Có \(\Delta'=\left(y+19\right)^2-50y^2+60y-410\)
\(=-49y^2+98y-49\)
\(=-49\left(y-1\right)^2\)
pt có nghiệm \(\Leftrightarrow\Delta'\ge0\)
\(\Leftrightarrow-49\left(y-1\right)^2\ge0\)
\(\Leftrightarrow y=1\)
Thế vào pt (2) được x = 2
\(2,\)Đặt\(\left(a\sqrt{a};b\sqrt{b};c\sqrt{c}\right)\rightarrow\left(x;y;z\right)\left(x,y,z>0\right)\)
\(\Rightarrow xy+yz+zx=1\)
Khi đó \(P=\frac{x^4}{x^2+y^2}+\frac{y^4}{y^2+z^2}+\frac{z^4}{x^2+z^2}\)
Áp dụng bđt \(\frac{a^2}{x}+\frac{b^2}{y}+\frac{c^2}{z}\ge\frac{\left(a+b+c\right)^2}{x+y+z}\left(x;y;z>0\right)\left(Cauchy-engel-type_3\right)\)được
\(P\ge\frac{\left(x^2+y^2+z^2\right)^2}{2\left(x^2+y^2+z^2\right)}=\frac{x^2+y^2+z^2}{2}\)
Áp dụng bđt x2 + y2 + z2 > xy + yz + zx (tự chứng minh) ta được
\(P\ge\frac{x^2+y^2+z^2}{2}\ge\frac{xy+yz+zx}{2}=\frac{1}{2}\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}xy+yz+zx=1\\x=y=z\end{cases}}\)
\(\Leftrightarrow x=y=z=\frac{1}{\sqrt{3}}\)
\(\Leftrightarrow\sqrt{a^3}=\sqrt{b^3}=\sqrt{c^3}=\frac{1}{\sqrt{3}}\)
\(\Leftrightarrow a^3=b^3=c^3=\frac{1}{3}\)
\(\Leftrightarrow a=b=c=\frac{1}{\sqrt[3]{3}}\)
Vậy \(P_{min}=\frac{1}{2}\Leftrightarrow a=b=c=\frac{1}{\sqrt[3]{3}}\)
Câu đầu thử xét delta đi rồi dùng công thức nghiệm sẽ tìm đc mối liên hệ x, y -> dễ
giải hệ phương trình :
\(\hept{\begin{cases}x^2+3y^2-2xy-10x+22y+34=0\\x^2+5y^2-4xy-16x+38y+68=0\end{cases}}\)
giải phương trình sau: 6y2 + 5y - 50 = 0
Bài này phân tích thành nhân tử là xong, lưu ý là \(\frac{5}{2}\)là nghiệm của phương trình trên nên phương trình có nhân tử là\(2y-5\)
\(Pt\Leftrightarrow6y^2-15y+20y-50=0\Leftrightarrow3y\left(2y-5\right)+10\left(2y-5\right)=0\Leftrightarrow\left(2y-5\right)\left(3y+10\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}\left(2y-5\right)=0\\\left(3y+10\right)=0\end{cases}\Leftrightarrow\orbr{\begin{cases}y=\frac{5}{2}\\y=\frac{-10}{3}\end{cases}}}\)
Vậy phương trình có 2 nghiệm là \(y=\frac{5}{2}\)và \(y=\frac{-10}{3}\)
\(6y^2+5y-50=0\)
\(6y^2+5y-1-49=0\)
\(6y^2+5y-1=49\)
\(6y^2+6y-y-1=49\)
\(6y\left(y+1\right)-\left(y+1\right)=49\)
\(\left(y+1\right)\left(6y-1\right)=49=\left(-1\right)\left(-49\right)=1.49=7.7=\left(-7\right)\left(-7\right)\)
\(\text{Bạn xét từng trường hợp là được}\)
\(\text{bạn k làm được thì nhắn mình, mình làm cho ^_^}\)
Giải các phương trình sau
1) 2x2 + 2y2 + z2 +2xy + 2yz + 2zx + 2x + 4y + 5 =0
2) x2 - 4xy + 5y2 + 10x - 22y + 26 =0
*Dùng bất đẳng thức (\(\ge0\)).
Nguyệt đểu nhá, ra là hồi hè bà chs trò này:))
Giải phương trình: x2 - 2xy + 2y2 - 2x + 6y +13 =0
Giải phương trình nghiệm nguyên sau :
a) 8x2 - 5y2 +10x +4 = 0
b) 4x2 +y2 -4x -6y -24 =0
Các bạn giúp mik với mk đang cần gấp
3 người đầu tiên trả lời mk k
a, 5y2/2 - 2xy -6y + 6 = 0
b, x2 + 5y2/2 - 2xy -6y + 6 = 0
Làm đúng mk tick nha
Tìm số nguyên dương x,y biết:
a) \(x^2+5y^2+2x-4xy-10y-9=0\)
b) \(5x^2+5y^2+8xy+2+2y-2x=0\)
c) \(x^2+5y^2-4xy+10x-22y+\left|x+y+z\right|+26=0\)
d) \(2x^2+2y^2+z^2+2xy+2xz+2yz+10x+6y+34=0\)
a/
\(\Leftrightarrow\left(x^2+4y^2+1-4xy+2x-4y\right)+\left(y^2-6y+9\right)-19=0\)
\(\Leftrightarrow\left(x-2y+1\right)^2+\left(y-3\right)^2=19\)
Do 19 không thể phân tích thành tổng của 2 số chính phương nên pt vô nghiệm
b/
\(\left(4x^2+4y^2+8xy\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow\left(2x+2y\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)
Do x; y nguyên dương nên \(\left(2x+2y\right)^2>0\Rightarrow VT>0\)
Pt vô nghiệm
c/
\(\Leftrightarrow\left(x^2+4y^2+25-4xy+10x-20y+25\right)+\left(y^2-2y+1\right)+\left|x+y+z\right|=0\)
\(\Leftrightarrow\left(x-2y+5\right)^2+\left(y-1\right)^2+\left|x+y+z\right|=0\)
Do x;y;z nguyên dương nên \(\left|x+y+z\right|>0\Rightarrow VT>0\)
Vậy pt vô nghiệm
d/
\(\Leftrightarrow\left(x^2+y^2+z^2+2xy+2yz+2zx\right)+\left(x^2+10x+25\right)+\left(y^2+6y+9\right)=0\)
\(\Leftrightarrow\left(x+y+z\right)^2+\left(x+5\right)^2+\left(y+3\right)^2=0\)
Do x;y;z nguyên dương nên vế phái luôn dương
Pt vô nghiệm