Những câu hỏi liên quan
TA
Xem chi tiết
TN
17 tháng 11 2016 lúc 17:10

Từ \(6a^2+ab=35b^2\)\(\Rightarrow6a^2+ab-35b^2=0\)

\(\Rightarrow6a^2+15ab-14ab-35b^2=0\)

\(\Rightarrow3a\left(2a+5b\right)-7b\left(2a+5b\right)=0\)

\(\Rightarrow\left(3a-7b\right)\left(2a+5b\right)=0\)

\(\Rightarrow\orbr{\begin{cases}3a=7b\\2a=-5b\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}a=\frac{7b}{3}\\a=-\frac{5b}{2}\end{cases}}\)

Thay vao tinh....

Bình luận (0)
HH
Xem chi tiết
AN
17 tháng 11 2016 lúc 23:06

Thế vào ta được

\(M=\frac{3.\frac{7^2}{3^2}b^2+5b^2+\frac{7}{3}b^2}{2.\frac{7^2}{3^2}b^2+4b^2-3.\frac{7}{3}b^2}\)

\(=\frac{\frac{49+15+7}{3}}{\frac{98+36-63}{9}}=\frac{\frac{71}{3}}{\frac{71}{9}}=3\)

Bình luận (0)
AN
17 tháng 11 2016 lúc 17:03

Ta có: \(6a^2+ab=35b^2\)

\(\Leftrightarrow\left(6a^2-14ab\right)+\left(15ab-35b^2\right)=0\)

\(\Leftrightarrow\left(3a-7b\right)\left(2a+5b\right)=0\)

\(\Rightarrow3a=7b\Rightarrow a=\frac{7b}{3}\)

\(\Rightarrow M=3\)

Bình luận (0)
AN
17 tháng 11 2016 lúc 19:06

Cái này bạn thế số vô là xong mà. Thế số thì mình không giúp đâu vì nó đơn giản mà tốn thời gian. Bạn tự thế nha

Bình luận (0)
HH
Xem chi tiết
AN
16 tháng 11 2016 lúc 22:52

Ta có

\(\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}=\frac{3a^2+15ab-6b^2}{9a^2-b^2}\left(1\right)\)

Ta lại có

\(6a^2-15ab+5b^2=0\)

\(\Leftrightarrow9a^2-b^2=3a^2+15ab-6b^2\left(2\right)\)

Từ (1) và (2) => Q = 1

Bình luận (0)
AN
16 tháng 11 2016 lúc 22:03

Đề thiếu rồi 

Bình luận (0)
AH
22 tháng 12 2017 lúc 20:02

kết quả =1

Bình luận (0)
TA
Xem chi tiết
TB
18 tháng 7 2018 lúc 8:40

Bạn vào câu hỏi tương tự nhé !

Bình luận (0)
ST
18 tháng 7 2018 lúc 9:35

Ta có: \(6a^2-15ab+5b^2=0\Leftrightarrow6a^2+5b^2=15ab\)  

Lại có: \(P=\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}=\frac{\left(2a-b\right)\left(3a+b\right)+\left(3a-b\right)\left(5b-a\right)}{\left(3a-b\right)\left(3a+b\right)}\)

\(=\frac{6a^2+2ab-3ab-b^2+15ab-3a^2-5b^2+ab}{9a^2-b^2}\)\(=\frac{3a^2+15ab-6b^2}{9a^2-b^2}\)

\(=\frac{3a^2+6a^2+5b^2-6b^2}{9a^2-b^2}=\frac{9a^2-b^2}{9a^2-b^2}=1\)

Bình luận (0)
DV
Xem chi tiết
H24
26 tháng 11 2021 lúc 9:09

A = 0

Bình luận (0)
VG
26 tháng 11 2021 lúc 9:17

A=0

Bình luận (0)
NA
Xem chi tiết
PH
15 tháng 9 2018 lúc 20:39

     \(10a^2-b^2+ab=0\)

\(\Rightarrow10a^2+6ab-5ab-3b^2=0\)

\(\Rightarrow2a\left(5a+3b\right)-b\left(5a+3b\right)=0\)

\(\Rightarrow\left(5a+3b\right)\left(2a-b\right)=0\)

Mà \(b>a>0\Rightarrow5a+3b>0\)

Do đó: \(2a-b=0\Rightarrow2a=b\)

Ta có: \(B=\frac{2a-b}{3a-b}+\frac{5b-a}{3a+b}\)

             \(=0+\frac{10a-a}{3a+2a}\) (vì b = 2a)

              \(=0+\frac{9}{5}=\frac{9}{5}\)

Vậy \(A=\frac{9}{5}\)

Chúc bạn học tốt.

         

Bình luận (0)
PK
Xem chi tiết
DL
26 tháng 6 2016 lúc 5:47

1) \(a^3+2a^2-13a+10=a^3-a^2+3a^2-3a-10a+10=\)

\(=a^2\left(a-1\right)+3a\left(a-1\right)-10\left(a-1\right)=\left(a-1\right)\left(a^2+3a-10\right)\)

\(=\left(a-1\right)\left(a^2-2a+5a-10\right)=\left(a-1\right)\left[a\left(a-2\right)+5\left(a-2\right)\right]=\)

\(=\left(a-1\right)\left(a-2\right)\left(a+5\right)\)

b) \(\left(a^2+4b^2-5\right)^2-16\left(ab+1\right)^2=\left(a^2+4b^2-5+4ab+4\right)\left(a^2+4b^2-5-4ab-4\right)\)

\(=\left(a^2+4ab+4b^2-1\right)\left(a^2-4ab+4b^2-9\right)=\left[\left(a+2b\right)^2-1\right]\left[\left(a-2b\right)^2-9\right]=\)

\(=\left(a+2b+1\right)\left(a+2b-1\right)\left(a-2b+3\right)\left(a-2b-3\right)\)

2) \(6a-5b=1\Rightarrow5b=6a-1\Rightarrow25b^2=36a^2-12a+1\)

\(\Rightarrow4a^2+25b^2=40a^2-12a+1=40\left(a^2-2\cdot a\cdot\frac{3}{20}+\left(\frac{3}{20}\right)^2\right)+1-\frac{9}{10}\)

\(=40\left(a-\frac{3}{20}\right)^2+\frac{1}{10}\)

Vậy GTNN của \(4a^2+25b^2\)= 1/10. Xảy ra khi a = 3/20 và b = -1/50.

Bình luận (0)
HL
Xem chi tiết
NT
Xem chi tiết