Cho P, P+4 là 2 SNT (P>3). CMR P+8 là hợp số.
Cho p và p+4 là SNT >3.CMR p+8 là hợp số (SNT= số nguyên tố)
Ví p là SNT > 3
=> p có dạng 3q + 1 hoặc 3p + 2
+ Xét p = 3p + 2
Ta có :
p + 4 = 3p + 2 + 4 = 3 p + 6 = 3 ( p + 2 )
Vì 3 ( p + 2 ) chia hết cho 3 nên p + 4 là hợp số
=> loại p = 3p + 2
Vậy p = 3q + 1
Ta có :
p + 8 = 3q + 1 + 8 = 3q + 9 = 3 ( q + 3 )
Ví 3 ( q + 3 ) chia hết cho 3
Mà p + 8 > 3
=> p + 8 là hợp số
Vậy p + 8 là hợp số
Trong olm có ai ở Sài gòn không? ở quận mấy?
có ai ở long xuyên không?
có ai ở Đà lạt không?
Nếu có hãy nhắn tin vs mình nhé! Mình đã đọc nội qui.vui lòng ko đăng cái thứ nhảm loz ấy lên đây=))
cho p là 1 snt >3 và p+8 là snt
CMR p+16 và p+22 là hợp số
1)CMR 2n+1 và 2n(n+1) là 2 số nguyên tố cùng nhau.
2)Tìm SNT P sao cho P chia cho 42 có số dư r là một hợp số.Tìm số dư r.
3)Tìm SNT P sao cho các số sau cũng là SNT:
a)P+2 và P+10
b)P+10 và P+20
c)P+2;P+6;P+8;P+12;P+14;
b1 Tìm stn p sao cho p+2 và p+4 đều là số nguyên tố
b2 cho p và p+8 đều là snt>3 hỏi p+100 có phải snt ko
b3 1 snt p: 42 có dư là hợp số.tìm số dư
b4 tổng của 3 snt là 1990 .tìm số nhỏ nhất trog 3 số.
bài 3 nè : ta có a=42q+r=2*3*7q+r(q,r thuộc N,0<r<42 Vì a là SNT nên r ko chia hết cho 2,3,7 tìm các hợp số <42 loại chia hết cho 3,7 còn 25 r=25
Giúp mik với
Bài 1 Cho p và p+4 là SNT; p>3.CMR p+8 là hợp số
(ai giải đúng mik like )
Vì p là số nguyên tố, p>3 nên p có một trong 2 dạng sau:
p=3k+1( k thuộc N*)
p=3k+2(k thuộc N*)
Nếu p=3k+2 ta có:
3k+2+4=3k+6=3(k+2) chia hết cho 3=> là hợp số(loại) vì p+4 là số nguyên tố
Nếu p=3k+1 ta có:
3k+1+8=3k+9=3(k+3) là hợp số phù hợp với đề bài
Vậy số nguyên tố p có dạng 3k+1 thì p+8 là hợp số.
Tick nha
Vì p là số nguyên tố, p>3 nên số p có 1 trong 2 dạng:
p=3k+1(k thuộc N*)
p=3k+2(k thuộc N*)
Thử vảo là xong
3k + 2 nhưng do p +4 là số nguyên tố nên p không thể có dạng 3k + 2 vậy p có dạng 3k +1. Vậy p + 8 = 3k + 9 chia hết cho 3 nên nó là hợp số.
Câu 2: chắc có vấn đề ... đã nguyên tố còn chia hết cho 6
Câu 3: 3 là số nguyên tố thỏa mãn yêu cầu bài toán, ta cần c/m với các số nguyên tố p> 3 không có số nào thỏa mãn yêu cầu:
số p có dạng 3k+1 hoặc 3k+2 (nếu có dạng 3k sẽ chia hết cho 3)
Nếu p có dạng 3k + 1 thì p+2 chia hết cho 3 nên không thỏa mãn
Nếu p có dạng 3k+2 thì p+10 chia hết cho 3 nên không thỏa mãn
Vậy chỉ có 3 là thỏa mãn yêu cầu
Cho p là SNT > 3
a, CMR : p có dạng 6k + 1 hoặc 6k + 5
b, Biết 8p + 1 cũng là SNT. CMR : 4p + 1 là hợp số
Cac Snt >3 deu co dang 6k+1;6k+2;6k+3;6k+4;6k+5
Neu p=6k+2 thi chia het cho 2
Neu p= 6k+3thi chia het cho 3
Neu p =6k+4 thi chia het cho 2
Vay p chi co the =6k+1 hoac 6k+5
Cho p và p^2+1 là SNT .CMR p^4+2018 là hợp số
Ai giuk nhk ạ!
Ta thấy p2 là số chính phương nên chia 3 dư 0 hoặc 1.
+) Nếu p2 chia 3 dư 0: Khi đó p \(⋮\) 3 (vì 3 là số nguyên tố) \(\Rightarrow\) p = 3 (vì p là số nguyên tố) \(\Rightarrow\) p2 + 1 = 10 là hợp số (loại, vì p2 + 1 là số nguyên tố)
+) Nếu p2 chia 3 dư 1: Khi đó p \(⋮̸\) 3 \(\Rightarrow\) p4 \(⋮̸\) 3. Lại có p4 là số chính phương nên chia 3 dư 0 hoặc 1. Mà p4 \(⋮̸\) 3 nên p4 chia 3 dư 1 \(\Rightarrow\) p4 + 2018 chia hết cho 3 (vì 2018 chia 3 dư -1) \(\Rightarrow\) p4 + 2018 là hợp số (vì nó lớn hơn 3)
Vậy ta có đpcm
Cho p là SNT lớn hơn 3,p+8 cũng là SNT. Hỏi p+2021 là SNT hay hợp số
Vì p là số nguyên tố lớn hơn 3 nên p là số nguyên tố lẻ
=> Tổng p+2021 là số chẵn
Mà p+2021>2 nên p+2021 là hợp số
Vậy p+2021 là họp số.
Cho p và p+4 là SNT(p>3). Chứng minh p+ 8 là hợp số
\(p\)là số nguyên tố\(>3\)
Nên\(p=3k+1\)hoặc\(3k+2\)
Xét\(p=3k+1,p+4=3k+1+4=3k+5\)(thỏa mãn)
Xét\(p=3k+2,p+4=3k+2+4=3k+6=3\left(k+2\right)\)là hợp số (loại)
Vậy\(p=3k+1,p+8=3k+1+8=3k+9=3\left(k+3\right)\)là hợp số\(\left(đpcm\right)\)