Những câu hỏi liên quan
PM
Xem chi tiết
NH
Xem chi tiết
LN
Xem chi tiết
TQ
8 tháng 5 2019 lúc 14:47

\(n^8+4n^7+6n^6+4n^5+n^4=n^4\left(n^4+4n^3+6n^2+4n+1\right)=n^4\left(n+1\right)\left(n^3+3n^2+3n+1\right)=n^4\left(n+1\right)\left(n+1\right)^3=n^4\left(n+1\right)^4=\left[n\left(n+1\right)\right]^4\)

Ta có \(n\left(n+1\right)\) là tích 2 số nguyên liên tiếp\(\Rightarrow n\left(n+1\right)⋮2\)\(\Rightarrow\left[n\left(n+1\right)\right]^4⋮16\)

Vậy \(n^8+4n^7+6n^6+4n^5+n^4⋮16\)

Bình luận (0)
NA
Xem chi tiết
DT
Xem chi tiết
NT
14 tháng 3 2016 lúc 8:50

Tacó : A = n4 ( n4 +4n3 +6n2 +4n + 1 ) 
= n4 ( n4 + n3+ 3n3 + 3n2 +3n2 + 3n + n +1) 
= n4 ( n + 1 )(n3 +3n2 + 3n + 1 ) = n4 ( n+1 ) (n+1)3 
= n4 ( n + 1 )4 = [ n(n +1)]4 
Vì n( n+1) là tích 2 số nguyên liên tiếp nên có một thừa số chia hết cho 2.
Do đó : A = [n ( n + 1 )]4 chia hết cho 24 =16 . Vậy : A chia hết cho 16 

Bình luận (0)
H24
20 tháng 1 2017 lúc 20:07

hay wa

Bình luận (0)
BD
Xem chi tiết
DT
Xem chi tiết
ST
3 tháng 6 2017 lúc 16:37

Đặt A là tên biểu thức

\(A=1-\frac{15}{16}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{4n^2}\)

\(A=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{2^2n^2}\)

\(A=\frac{1}{2^2}\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)

Ta có: \(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};....;\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)

\(A< \frac{1}{2^2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\right)\)

\(A< \frac{1}{2^2}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)

\(A< \frac{1}{2^2}\left(1-\frac{1}{n}\right)=\frac{1}{4}-\frac{1}{4n}< \frac{1}{4}\)(đpcm)

Bình luận (0)
NH
Xem chi tiết
HP
30 tháng 6 2018 lúc 11:22

Để n nguyên thì n\(\varepsilon Z\)

Bình luận (0)
SP
Xem chi tiết
MS
4 tháng 9 2018 lúc 0:12

\(\left(4n+3\right)^2-25=\left(4n+3-5\right)\left(4n+3+5\right)\)

\(=\left(4n-2\right)\left(4n+8\right)=2.\left(2n-1\right).4.\left(n+2\right)=8\left(2n-1\right)\left(n+2\right)⋮8\)

\(\left(2n+3\right)^2-9=\left(2n+3-3\right)\left(2n+3+3\right)\)

\(=2n\left(2n+6\right)=4n\left(n+3\right)⋮4\)

\(\left(3n+4\right)^2-16=\left(3n+4-4\right)\left(3n+4+4\right)\)

\(=3n\left(3n+8\right)⋮3\)

Bình luận (0)
NB
Xem chi tiết
XO
12 tháng 8 2023 lúc 18:39

Có \(A=\left(2n+2\right).\left(4n+8\right)=8.\left(n+1\right).\left(n+2\right)\)

Lại có n + 1 , n + 2 là 2 số tự nhiên liên tiếp 

nên (n + 1).(n + 2) \(⋮2\forall n\inℕ\)

\(\Leftrightarrow A=8\left(n+1\right)\left(n+2\right)⋮16\)

Bình luận (0)