2+2^2+2^3+2^4+.......+2^23+2^24
chứng minh dãy số trên chia hết cho 7
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Cho A = 4+4^2+4^3+...+4^23+4^24
Chứng minh : A chia hết cho 20, 21 và 420
mọi người giúp mik vs, mai mik thi rồi
\(A=4+4^2+4^3+...+4^{23}+4^{24}\)
\(=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{23}+4^{24}\right)\)
\(=20+4^3.\left(4+4^2\right)+....+4^{23}.\left(4+4^2\right)\)
\(=1.20+4^3.20+....+4^{23}.20\)
\(=\left(1+4^3+...+4^{23}\right).20\)
\(\Rightarrow A⋮20\)
-------------------------------------------------------------------------
\(A=4+4^2+4^3+....+4^{23}+4^{24}\)
\(=\left(4+4^2+4^3\right)+\left(4^4+4^5+4^6\right)+....+\left(4^{22}+4^{23}+4^{24}\right)\)
\(=84+4^4.\left(4+4^2+4^3\right)+.....+4^{22}.\left(4+4^2+4^3\right)\)
\(=1.84+4^4.84+....+4^{22}.84\)
\(=\left(1+4^4+...+4^{22}\right).84\)
\(\Rightarrow A⋮84⋮21\)
---------------------------------------------------------------------------
\(A=4+4^2+4^3+......+4^{23}+4^{24}\)\(=\left(4+4^2+4^3+4^4+4^5+4^6\right)+\left(4^7+4^8+4^9+4^{10}+4^{11}+4^{12}\right)+...+\left(4^{19}+4^{20}+4^{21}+4^{22}+4^{23}+4^{24}\right)\)
\(=5460+4^7.\left(4+4^2+4^3+4^4+4^5+4^6\right)+....+4^{19}.\left(4+4^2+4^3+4^4+4^5+4^6\right)\)
\(=1.5460+4^7.5460+...4^{19}.5460\)
\(=\left(1+4^7+...+4^{19}\right).5460\)
\(\Rightarrow A⋮5460⋮420\)
1. Từ các chữ số tự nhiên 1, 2, 3, 4….xóa hết các số chia hết cho 2 và chia hết cho 3, nhưng giữ lại các số chia hết cho 5. Các số còn lại là: 1, 5, 7, 10, 11, 13, 15, 17, 19, 20, 23, 25, 29, 30….Trong dãy trên, số thứ 2006 là bao nhiêu?
a, Chứng minh rằng: \(3^{n+2}\) - \(2^{n+4}\) + \(3^n\) + \(2^n\) chia hết cho 30 với mọi số nguyên dương n.
b, Một số chia hết cho 7 dư 3, chia cho 17 dư 12, chia cho 23 dư 7. Hỏi nếu số đó chia cho 2737 dư bao nhiêu?
a) Ta có: \(3^{n+2}-2^{n+4}+3^n+2^n\)
\(=3^n\cdot9+3^n-2^n\cdot16+2^n\)
\(=3^n\cdot10+2^n\cdot15⋮30\)
Câu hỏi : Chứng minh rằng với mọi số nguyên x,y thì
a) 2.x^2 + 3.y chia hết cho 17 khi và chỉ khi 9.x^2 + 5.y chia hết cho 17
b) 5.x^2 - 4.y chia hết cho 23 khi và chỉ khi 3.x^2 - 7.y chia hết cho 23
Câu hỏi : Chứng minh rằng với mọi số nguyên x,y thì
a) 2.x^2 + 3.y chia hết cho 17 khi và chỉ khi 9.x^2 + 5.y chia hết cho 17
b) 5.x^2 - 4.y chia hết cho 23 khi và chỉ khi 3.x^2 - 7.y chia hết cho 23
ảnh đẹp đó nhưng hổng có liên quan
Câu hỏi : Chứng minh rằng với mọi số nguyên x,y thì
a) 2.x^2 + 3.y chia hết cho 17 khi và chỉ khi 9.x^2 + 5.y chia hết cho 17
b) 5.x^2 - 4.y chia hết cho 23 khi và chỉ khi 3.x^2 - 7.y chia hết cho 23
9x2 + 5y chia hết cho 17
mà ƯCLN(4 ; 17) = 1
nên 4(9x2 + 5y) chia hết cho 17
hay 36x2 + 20y chia hết cho 17
mà 34x2 chia hết cho 17 ; 17y chia hết cho 17
nên 36x2 + 20y - 34x2 - 17y = 2x2 + 3y chia hết cho 17
***
3x2 - 7y chia hết cho 23
mà ƯCLN(17 ; 23) = 1
nên 17(3x2 - 7y) chia hết cho 23
hay 51x2 - 119y chia hết cho 23
mà 46x2 chia hết cho 23 ; 115y chia hết cho 23
nên 51x2 - 119y - 46x2 + 115y = 5x2 - 4y chia hết cho 23
Chúc bạn học tốt ^^
Chứng minh rằng : a, M = 21^9+21^8+21^7 +....+ 21+1 chia hết cho 2 và 5 b, N = 6+6^2+6^3 +....+ 6^2020 chia hết cho 7 nhưng không chia hết cho 9 c, P = 4+4^2+4^3 +....+ 4^23+4^24 chia hết cho 20 và 21 d, Q = 6+6^2+6^3 +....+ 6^99 chia hết cho 43
Hộ mình làm bài này nhá :))))))))
Giải:
a) \(M=21^9+21^8+21^7+...+21+1\)
Do \(21^n\) luôn có tận cùng là 1
\(\Rightarrow M=21^9+21^8+21^7+...+21+1\)
Tân cùng của M là:
\(1+1+1+1+1+1+1+1+1+1=10\) tận cùng là 0
\(\Rightarrow M⋮10\)
\(\Leftrightarrow M⋮2;5\)
b) \(N=6+6^2+6^3+...+6^{2020}\)
\(N=6.\left(1+6\right)+6^3.\left(1+6\right)+...+6^{2019}.\left(1+6\right)\)
\(N=6.7+6^3.7+...+6^{2019}.7\)
\(N=7.\left(6+6^3+...+6^{2019}\right)⋮7\)
\(\Rightarrow N⋮7\)
Ta thấy: \(N=6+6^2+6^3+...+6^{2020}⋮6\)
Mà \(6⋮̸9\)
\(\Rightarrow N⋮̸9\)
c) \(P=4+4^2+4^3+...+4^{23}+4^{24}\)
\(P=1.\left(4+4^2\right)+4^2.\left(4+4^2\right)+...+4^{20}.\left(4+4^2\right)+4^{22}.\left(4+4^2\right)\)
\(P=1.20+4^2.20+...+4^{20}.20+4^{22}.20\)
\(P=20.\left(1+4^2+...+4^{20}+4^{22}\right)⋮20\)
\(\Rightarrow P⋮20\)
\(P=4+4^2+4^3+...+4^{23}+4^{24}\)
\(P=4.\left(1+4+4^2\right)+...+4^{22}.\left(1+4+4^2\right)\)
\(P=4.21+...+4^{22}.21\)
\(P=21.\left(4+...+4^{22}\right)⋮21\)
\(\Rightarrow P⋮21\)
d) \(Q=6+6^2+6^3+...+6^{99}\)
\(Q=6.\left(1+6+6^2\right)+...+6^{97}.\left(1+6+6^2\right)\)
\(Q=6.43+...+6^{97}.43\)
\(Q=43.\left(6+...+6^{97}\right)⋮43\)
\(\Rightarrow Q⋮43\)
Chúc bạn học tốt!
a) Chứng minh rằng: 3^n+2 -2^n+4 + 3^n+2^n chia hết cho 30 với mọi số nguyên dương n.
b) Một số chia cho 7 dư 3, chia cho 17 dư 12, chia cho 23 dư 7 . Hỏi số đó chia cho 2737 dư bao nhiêu?
Ta có : 3n + 2 - 2n + 4 + 3n + 2n
= 3n(32 + 1) - 2n(24 - 1)
= 3n.10 - 2n.15
= 3n - 1.3.10 - 2n - 1.2.15
= 3n - 1.30 - 2n - 1.30
= 30(3n - 1 - 2n - 1) \(⋮\)30 (đpcm)
Câu a có rồi
b) Bg
Gọi số của đề bài là a (a \(\inℕ^∗\))
Theo đề bài: a = 7x + 3, a = 17y + 12, a = 23z + 7 (x, y, z \(\inℕ\))
=> a + 39 = 7x + 3 + 39 = 7x + 42 = 7x + 7.6 = 7.(x + 6) \(⋮\)7
=> a + 39 = 17y + 12 + 39 = 17y + 51 = 17y + 17.3 = 17.(y + 3) \(⋮\)17
=> a + 39 = 23z + 7 + 39 = 23z + 46 = 23z + 23.2 = 23.(z + 2) \(⋮\)23
=> a + 39 \(⋮\)7; 17; 23
Ta có: 2737 = 7.17.23 (phân tích thừa số nguyên tố)
=> a + 39 \(⋮\)2737
=> a = 2737p - 39
=> a = 2737p - 2737 + 2698
=> a = 2737.(p - 1) + 2698
Vì 2698 < 2737
=> a chia 2737 dư 2698
Vậy số đó chia 2737 dư 2698
a) \(3^{n+2}-2^{n+4}+3^n+2^n=\left(3^{n+2}+3^n\right)-\left(2^{n+4}-2^n\right)\)
\(=3^n\left(3^2+1\right)-2^n\left(2^4-1\right)=3^n\left(9+1\right)-2^n.\left(16-1\right)\)
\(=3^n.10-2^n.15=3.10.\left(3^{n-1}-2^{n-1}\right)=30.\left(3^{n-1}-2^{n-1}\right)⋮30\)
A = 2 + 2^2 + 2^3 + ... + 2^23 + 2^24 . Chứng minh rằng A chia hết cho 6 ; A chia hết cho 7
a) A = (2 + 22) + (23 + 24) +......+ (223 + 224)
A = 6 + 22.(2 + 22) +.....+222.(2 + 22)
A= 6 + 22.6 +.....+ 222.6
A = 6.(1+22+.....+222)
Vì 6 chia hết cho 6 nên 6.(1+22+.....+222) cũng chia hết cho 6
Hay A chia hết cho 6
b) A = (2 + 22 + 23)+.......+(222 + 223 + 224)
A= 14 + ....+ 221. (2 + 22 +23)
A= 14 +....+ 221 . 14
A = 14 .( 1 +...+ 221)
Vì 14 chia hết cho 7 nên 14 .( 1 +...+ 221) cũng chia hết cho 7
Hay A chia hết cho 7
Nhớ tk cho mình nha