Những câu hỏi liên quan
TM
Xem chi tiết
H24
22 tháng 9 2016 lúc 19:47

Xét tổng:

(5a-4b)+4(2a+b)=5a-4b+8a+4b

<=>(5a-4b)+4(2a+b)=13a

Ta có : 13 chia hết cho 13 => 13a chia hết cho 13 với mọi a thuộc Z

=> [(5a-4b)+4(2a+b)] chia hết cho 13                 (1)

Ta có (5a-4b) chia hết cho 13 - Bài cho               (2)

Từ (1) ; (2) => 4(2a+b) chia hết cho 13

mà (4,13) =1

=> (2a+b) chia hết cho 14

Do đó nếu (5a-4b) chia hết cho 13 thì (2a+b) chia hết cho 13

Bình luận (0)
CN
Xem chi tiết
NT
2 tháng 7 2023 lúc 20:34

a: a^3-a=a(a^2-1)

=a(a-1)(a+1)

Vì a;a-1;a+1 là ba số liên tiếp

nên a(a-1)(a+1) chia hết cho 3!=6

=>a^3-a chia hết cho 6

Bình luận (0)
NA
Xem chi tiết
NT
16 tháng 12 2016 lúc 17:34

a^3 + 5a = a^3 - a + 6a

               = a( a^2 - 1) + 6a 

               = a( a-1) ( a+1) + 6a 

nhận xét a,( a-1),(a+1) là 3 số nguyên liên tiếp vì a thuộc Z 

nên trong 3 số có 1 số chia hết cho 3 và ít nhất 1 số chia hết cho 2

mà 2 và 3 nguyên tố cung nhau nên a(a-1)(a+1) chia hết cho 2 x 3 hay chia hết cho 6 

vậy a^3 -a chia hết cho 6 mà 6a chia hết cho 6

nên a^3 -a + 6a chia hết cho 6

hay a^3 + 5a chia hết cho 6 ( đpcm)

Bình luận (0)
H24
2 tháng 9 2017 lúc 14:24

a^3 + 5a = a^3 - a + 6a

               = a( a^2 - 1) + 6a 

               = a( a-1) ( a+1) + 6a 

nhận xét a,( a-1),(a+1) là 3 số nguyên liên tiếp vì a thuộc Z 

nên trong 3 số có 1 số chia hết cho 3 và ít nhất 1 số chia hết cho 2

mà 2 và 3 nguyên tố cung nhau nên a(a-1)(a+1) chia hết cho 2 x 3 hay chia hết cho 6 

vậy a^3 -a chia hết cho 6 mà 6a chia hết cho 6

nên a^3 -a + 6a chia hết cho 6

hay a^3 + 5a chia hết cho 6 ( đpcm)

Bình luận (0)
H24
2 tháng 9 2017 lúc 14:40

cm bằng qui nạp 

thử n=1 ta có n^3+5n = 6 => dúng 

giả sử đúng với n =k 

ta cm đúng với n= k+1 

(k+1)^3+5(k+1) = k^3 +5k + 3k^2 +3k +6 

vì k^3 +5k chia hết cho 6, và 6 chia hết cho 6 nên ta cần cm 3k^2 +3k chia hết cho 6 <=> k^2 +k chia hết cho 2 

mà k(k +1) chia hết cho 2vì nếu k lẻ thì k+1 chẳn => chia hết 

nế k chẳn thì đương nhiên chia hết 

vậy đúng n= k+ 1 

theo nguyen lý qui nạp ta có điều phai chứng minh

Bình luận (0)
DH
Xem chi tiết
NT
17 tháng 10 2021 lúc 0:17

Đề sai rồi bạn

Bình luận (0)
NL
Xem chi tiết
LN
Xem chi tiết
MM
Xem chi tiết
SG
25 tháng 10 2017 lúc 17:28

a3 + b3 + c3 + 5a + 5b + 5c

= a3 - a + b3 - b + c3 - c + 6a + 6b + 6c

= a(a2 - 1) + b(b2 - 1) + c(c2 - 1) + 6a + 6b + 6c

= a(a - 1)(a + 1) + b(b - 1)(b + 1) + c(c - 1)(c + 1) + 6(a + b + c)

a;b;c \(\in Z\) nên a(a - 1)(a + 1); b(b - 1)(b + 1); c(c - 1)(c + 1) là tích 3 số nguyên liên tiếp

=> a(a - 1)(a + 1); b(b - 1)(b + 1); c(c - 1)(c + 1) chia hết cho 3

Mà 6(a + b + c) chia hết cho 6

Do đó a(a - 1)(a + 1) + b(b - 1)(b + 1) + c(c - 1)(c + 1) + 6(a + b + c) chia hết cho 6

hay a3 + b3 + c3 + 5a + 5b + 5c chia hết cho 6 (đpcm)

Bình luận (0)
NT
Xem chi tiết
NB
Xem chi tiết
VM
3 tháng 8 2015 lúc 21:30

n^3-n=n(n-1)(n+1) là tích 3 số nguyên liên tiếp

=>tồn tại 1 bội của 3 =>n(n-1)(n+1) chia hết cho 3

=>tồn tại ít nhất 1 bội của 2 =>n(n-1)(n+1) chia hết cho 2

mà (2;3)=1=>n(n-1)(n+1)chia hết cho 6

hay n^3-n chia hết cho 6

n^5-n=n(n-1)(n+1)(n^2+1)

=n(n-1)(n+1)(n^2-4+5)

=n(n-1)(n+1)(n-2)(n+2)+5(n-1)n(n+1)

n(n-1)(n+1)(n-2)(n+2) là tích 5 số nguyên liên tiếp

=>tồn tại 1 bội của 5 =>n(n-1)(n+1) chia hết cho 5

=>tồn tại ít nhất2 bội của 2 =>n(n-1)(n+1) chia hết cho 2

mà (2;5)=1=>n(n-1)(n+1)(n-2)(n+2) chia hết cho 10

n(n-1)(n+1) là tích 3 số nguyên liên tiếp

=>tồn tại ít nhất 1 bội của 2 =>n(n-1)(n+1) chia hết cho 2

=>5n(n-1)(n+1) chia hết cho 10

=>n(n-1)(n+1)(n-2)(n+2)+5(n-1)n(n+1)chia hết cho 10

hay n^5-n chia hết cho 10

Bình luận (0)