Những câu hỏi liên quan
BC
Xem chi tiết
TN
17 tháng 7 2016 lúc 22:42

gọi 2 số lẻ bất kì là 2a + 1 và 2b + 1  (a,b \(\in\)N)

theo đề cần chứng minh: (2a + 1)2 + (2b + 1)2 không là số chính phương

có: (2a + 1)2 + (2b + 1)= 4a2 + 4a + 1 + 4b2 + 4b + 1 = 4 (a2 + a + b2 + b) + 2

=> (2a + 1)2 + (2b + 1)2 không là số chính phương  (vì số chính phương chia cho 4 không bao giờ có số dư là 2) 

Bình luận (0)
H24
Xem chi tiết
NT
18 tháng 1 2022 lúc 22:05

Gọi hai số lẻ bất kỳ là 2k+1 và 2a+1

\(\left(2k+1\right)^2+\left(2a+1\right)^2\)

\(=4k^2+4k+1+4a^2+4a+1\)

\(=4k^2+4a^2+4k+4a+2\) không là số chính phương

Bình luận (0)
H24
Xem chi tiết
OO
28 tháng 7 2018 lúc 15:26

tích mình đi

ai tích mình 

mình tích lại 

thanks

Bình luận (0)
H24
28 tháng 7 2018 lúc 15:30

Vì a và b là số lẻ nên a = 2k + 1, b= 2m + 1 (Với k, m ∈ N)

=> a2 + b2 = (2k + 1)2 + (2m + 1)2
= 4k2 + 4k + 1 + 4m2 + 4m + 1
= 4(k2 + k + m2 + m) + 2
=> a2 + b2 không thể là số chính phương

Bình luận (0)
PT
6 tháng 12 2020 lúc 22:04

Cho mình hỏi tại sao \(a^2+b^2=4\times\left(k^2+k+m^2+m\right)+2\)thì \(a^2+b^2\)không phải là số chính phương

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
H24
27 tháng 9 2017 lúc 21:21

Trung Nguyen

Vì a và b là số lẻ nên a = 2k + 1, b= 2m + 1 (Với k, m ∈ N)
=> a2 + b2 = (2k + 1)2 + (2m + 1)2
= 4k2 + 4k + 1 + 4m2 + 4m + 1
= 4(k2 + k + m2 + m) + 2
=> a2 + b2 không thể là số chính phương

Bình luận (0)
BD
27 tháng 9 2017 lúc 21:23

Binh phuong cua 1 so le dong du 1 (mod 4)

Suy ra tong binh phuong cua 2 so le bat ki dong du 2 (mod 4)

Ma scp dong du 0 hoac 1 (mod 4)

Vay tong binh phuong cua 2 so le bat ky khong phai la scp

Bình luận (0)
vu
27 tháng 9 2017 lúc 21:27

Vì a và b là số lẻ nên a = 2k + 1, b= 2m + 1 (Với k, m ∈ N)
=> a2 + b2 = (2k + 1)2 + (2m + 1)2
= 4k2 + 4k + 1 + 4m2 + 4m + 1
= 4(k2 + k + m2 + m) + 2
=> a2 + b2 không thể là số chính phương

Bình luận (0)
HT
Xem chi tiết
H24
22 tháng 1 2021 lúc 20:55

Vì a và b là số lẻ nên a = 2k + 1 ; b = 2m + 1 ( Với k;m \(\in\)N )

=> a2 + b2 = ( 2k + 1 )2 + ( 2m + 1 )2 = 4k2 + 4k + 1 + 4m2 + 4m + 1 = 4 ( k2 + k + m2 + m  ) + 2 

=> a2 + b2 không là số chính phương

Bình luận (0)
 Khách vãng lai đã xóa
HV
Xem chi tiết
DH
26 tháng 11 2021 lúc 22:29

Gọi ba tự nhiên lẻ bất kì lần lượt là \(2m+1,2n+1,2p+1\).

Ta có: \(\left(2m+1\right)^2+\left(2n+1\right)^2+\left(2p+1\right)^2\)

\(=4m^2+4m+1+4n^2+4n+1+4p^2+4p+1\)

\(\equiv3\left(mod4\right)\)

mà số chính phương khi chia cho \(4\)chỉ có thể dư \(0\)hoặc \(1\).

Do đó ta có đpcm. 

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
ND
Xem chi tiết
TM
Xem chi tiết
VB
9 tháng 7 2016 lúc 17:04

a và b lẻ 

=> a=2k+1

    b=2m+1

(k là số tự nhiên)

=>a2+b2=(2k+1)(2k+)+(2m+2)(2m+1)

           =4k2+4k+1+4m2+4m+1

          =4(k2+k+m2+m) + 2

mà số chính phương chia 4 chỉ có số dư 0 hoặc 1 

=> a2+b2 không phải số chính phương

=>đpcm

Bình luận (0)