Những câu hỏi liên quan
NV
Xem chi tiết
HK
17 tháng 6 2016 lúc 16:49

http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/

Bình luận (0)
DT
16 tháng 6 2016 lúc 22:25

bài của tui mà -_-

Bình luận (0)
NV
16 tháng 6 2016 lúc 22:30

hihi k biết làm nên đăng ^^

Bình luận (0)
KE
Xem chi tiết
LL
9 tháng 10 2021 lúc 15:46

a) \(x^2+y^2-2x+4y+6=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1\)

\(=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\forall x,y\)

b) \(2x^2+2x+3=2\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{5}{2}\)

\(=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{2}\ge\dfrac{5}{2}>0\forall x\)

c) \(x^2+y^2+z^2\ge xy+yz+xz\)

\(\Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2xz\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2+2yz+z^2\right)+\left(x^2+2xz+z^2\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ge0\left(đúng\right)\)

\(ĐTXR\Leftrightarrow x=y=z\)

Bình luận (0)
H24
Xem chi tiết
HM
Xem chi tiết
MT
Xem chi tiết
VL
11 tháng 6 2016 lúc 17:46

chứng minh cái gì đấy hả bạn ơi ?

Bình luận (0)
MT
11 tháng 6 2016 lúc 17:47

akl quên vế sau

Bình luận (0)
TN
13 tháng 6 2016 lúc 19:21

bài này tao nhớ là đã từng xem qua nhưng h ko nhớ cho rõ nx 

Bình luận (0)
FN
Xem chi tiết
SS
22 tháng 2 2016 lúc 21:03

ta có bđt phụ ,,,,,,,,  x2+y2+z2 >= xy+yz+zx

thay vào thôi,,,cái bđt dễ cm mà,,,nhân 2 2 vế rồi dùng tương đương

Bình luận (0)
HB
Xem chi tiết
AH
13 tháng 3 2020 lúc 0:11

Lời giải:

CM vế thứ nhất:

Xét hiệu: $x^2+y^2+z^2-(xy+yz+xz)=\frac{2x^2+2y^2+2z^2-2xy-2yz-2xz}{2}=\frac{(x-y)^2+(y-z)^2+(z-x)^2}{2}\geq 0$ với mọi $x,y,z$ là độ dài 3 cạnh tam giác.

$\Rightarrow x^2+y^2+z^2\geq xy+yz+xz$ (đpcm)

CM vế thứ 2:

Áp dụng BĐT tam giác ta có:

$x< y+z\Rightarrow x^2< x(y+z)$

$y< x+z\Rightarrow y^2< y(x+z)$

$z< x+y\Rightarrow z^2< z(x+y)$

Cộng theo vế 3 điều trên suy ra $x^2+y^2+z^2< 2(xy+yz+xz)$ (đpcm)

Vậy.........

Bình luận (0)
 Khách vãng lai đã xóa
NN
Xem chi tiết
H24
19 tháng 8 2023 lúc 20:13

Để chứng minh bất đẳng thức trên, ta sẽ sử dụng phương pháp giả sử ngược (Proof by Contradiction). Giả sử bất đẳng thức trên không đúng, tức là: (5x^3 - y^3)/(3x^2 + xy + 5y^3) + (5y^3 - z^3)/(3y^2 + yz + 5z^3) + (5z^3 - x^3)/(3z^2 + xz + 5x^3) > x + y + z Ta có thể viết lại bất đẳng thức trên thành: (5x^3 - y ^3)/(3x^2 + xy + 5y^3) - x + (5y^3 - z^3)/(3y^2 + yz + 5z^3) - y + (5z^3 - x^3 )/(3z^2 + xz + 5x^3) - z > 0 Tiếp theo, ta nhận thấy rằng với mọi a, b > 0, ta luôn có: (a^3 - b^3)/(a^2 + ab + b^2) - a > 0 and (a^3 - b^3)/(a^2 + ab + b^2) - b > 0. Vì vậy, áp dụng bất đẳng thức trên từng phần thức trong tổng, ta có: (5x^3 - y^3)/(3x^2 + xy + 5y^3) - x > 0 (5y ^3 - z^3)/(3y^2 + yz + 5z ^3) - y > 0 (5z^3 - x^3)/(3z^2 + xz + 5x^3) - z > 0 Khi đặt a = x^3, b = y^3, c = z^3, ta có: (5a - b)/(3a^2 + ab + 5b) - a^(1/3) > 0 (5b - c)/(3b^2 + bc + 5c) - b^(1/3) > 0 (5c - a)/(3c^2 + ac + 5a) - c^(1/3) > 0 Nói cách khác, ta có các bất đẳng thức sau: (5a - b)/(3a^2 + ab + 5b) > a^(1/3) (5b - c)/(3b^2 + bc + 5c) > b^(1/3) ( 5c - a)/(3c^2 + ac + 5a) > c^( 1/3) Áp dụng bất đẳng thức AM-GM, ta có: 3a^2 + ab + 5b ≥ 3∛(15a^2b) 3b^2 + bc + 5c ≥ 3∛(15b^2c) 3c^2 + ac + 5a ≥ 3∛(15c^2a) Khi đặt A = 3a^2 + ab + 5b, B = 3b^2 + bc + 5c, C = 3c^2 + ac + 5a, ta có: A > a ^ (1/3) B > b^(1/3) C > c^(1/3) Từ đó, ta có: (A + B + C) > (a^(1/3) + b^(1/3) + c^(1/3)) Nhưng A, B, C lần lượt tương ứng với các số mẫu trong bất đẳng thức ban đầu, ta thu được: (5a - b)/(3a^2 + ab + 5b) + (5b - c)/(3b^2 + bc + 5c) + (5c - a)/(3c^ 2 + ac + 5a) > (a^(1/3) + b^(1/3) + c^(1/3)) Tuy nhiên, điều này trái với giả định ban đầu.

Bình luận (0)
EC
Xem chi tiết