chứng minh bđt (x+y+z)2>=3(xy+yz+xz) với mọi số x, y, z
Cho các số dương x,y,z . Chứng minh rằng:
\(\frac{xy}{x^2+yz+xz}+\frac{yz}{y^2+xy+xz}+\frac{xz}{z^2+yz+xy}\le\frac{x^2+y^2+z^2}{xy+yz+xz}\)
http://diendantoanhoc.net/topic/160455-%C4%91%E1%BB%81-to%C3%A1n-v%C3%B2ng-2-tuy%E1%BB%83n-sinh-10-chuy%C3%AAn-b%C3%ACnh-thu%E1%BA%ADn-2016-2017/
Chứng minh:
a)x^2+y^2–2x+4y+6>0 với mọi x,y
b)2x^2+2x+3>0 với mọi x
c)x^2+y^2+z^2 ≥ xy+yz+xz với mọi x,y,z
a) \(x^2+y^2-2x+4y+6=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1\)
\(=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1>0\forall x,y\)
b) \(2x^2+2x+3=2\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{5}{2}\)
\(=2\left(x+\dfrac{1}{2}\right)^2+\dfrac{5}{2}\ge\dfrac{5}{2}>0\forall x\)
c) \(x^2+y^2+z^2\ge xy+yz+xz\)
\(\Leftrightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2xz\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(y^2+2yz+z^2\right)+\left(x^2+2xz+z^2\right)\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ge0\left(đúng\right)\)
\(ĐTXR\Leftrightarrow x=y=z\)
cho x,y,z là các số thực dương và x^2+y^2+z^2=x+y+z. chứng minh rằng x+y+z+3>=6 căn 3 xy+yz+xz/3. Mn giải giúp mình với ạ
hãy chứng minh rằng với mọi x, y, z ta có
\(x^2+y^2+z^2\ge xy+yz+xz\)
Cho các số dương x,y,z .Chứng minh rằng:
\(\frac{xy}{x^2+yz+xz}+\frac{yz}{y^2+xy+xz}+\frac{xz}{z^2+yz+xy}\le\frac{x^2+y^2+z^2}{xy+yz+xz}\)
Trích: đề ms thi , thánh nào lớp 9 giúp dùm =="
bài này tao nhớ là đã từng xem qua nhưng h ko nhớ cho rõ nx
cho 3 số dương x y z thỏa mãn x+y+z=1 Chứng minh 3/(xy+yz+xz) + 2/(x^2+y^2+z^2) > 14
ta có bđt phụ ,,,,,,,, x2+y2+z2 >= xy+yz+zx
thay vào thôi,,,cái bđt dễ cm mà,,,nhân 2 2 vế rồi dùng tương đương
Cho tam giác ABC với AB = x, AC = y, BC = z . Hãy chứng minh : \(xy+yz+xz\le x^2+y^2+z^2< 2\left(xy+yz+xz\right)\)
Lời giải:
CM vế thứ nhất:
Xét hiệu: $x^2+y^2+z^2-(xy+yz+xz)=\frac{2x^2+2y^2+2z^2-2xy-2yz-2xz}{2}=\frac{(x-y)^2+(y-z)^2+(z-x)^2}{2}\geq 0$ với mọi $x,y,z$ là độ dài 3 cạnh tam giác.
$\Rightarrow x^2+y^2+z^2\geq xy+yz+xz$ (đpcm)
CM vế thứ 2:
Áp dụng BĐT tam giác ta có:
$x< y+z\Rightarrow x^2< x(y+z)$
$y< x+z\Rightarrow y^2< y(x+z)$
$z< x+y\Rightarrow z^2< z(x+y)$
Cộng theo vế 3 điều trên suy ra $x^2+y^2+z^2< 2(xy+yz+xz)$ (đpcm)
Vậy.........
Chứng minh rằng: \(\dfrac{5x^3-y^3}{3x^2+xy}\)+\(\dfrac{5y^3-z^3}{3y^2+yz}\)+\(\dfrac{5z^3-x^3}{3z^2+xz}\)<=x+y+z, với z,y,z>0
Để chứng minh bất đẳng thức trên, ta sẽ sử dụng phương pháp giả sử ngược (Proof by Contradiction). Giả sử bất đẳng thức trên không đúng, tức là: (5x^3 - y^3)/(3x^2 + xy + 5y^3) + (5y^3 - z^3)/(3y^2 + yz + 5z^3) + (5z^3 - x^3)/(3z^2 + xz + 5x^3) > x + y + z Ta có thể viết lại bất đẳng thức trên thành: (5x^3 - y ^3)/(3x^2 + xy + 5y^3) - x + (5y^3 - z^3)/(3y^2 + yz + 5z^3) - y + (5z^3 - x^3 )/(3z^2 + xz + 5x^3) - z > 0 Tiếp theo, ta nhận thấy rằng với mọi a, b > 0, ta luôn có: (a^3 - b^3)/(a^2 + ab + b^2) - a > 0 and (a^3 - b^3)/(a^2 + ab + b^2) - b > 0. Vì vậy, áp dụng bất đẳng thức trên từng phần thức trong tổng, ta có: (5x^3 - y^3)/(3x^2 + xy + 5y^3) - x > 0 (5y ^3 - z^3)/(3y^2 + yz + 5z ^3) - y > 0 (5z^3 - x^3)/(3z^2 + xz + 5x^3) - z > 0 Khi đặt a = x^3, b = y^3, c = z^3, ta có: (5a - b)/(3a^2 + ab + 5b) - a^(1/3) > 0 (5b - c)/(3b^2 + bc + 5c) - b^(1/3) > 0 (5c - a)/(3c^2 + ac + 5a) - c^(1/3) > 0 Nói cách khác, ta có các bất đẳng thức sau: (5a - b)/(3a^2 + ab + 5b) > a^(1/3) (5b - c)/(3b^2 + bc + 5c) > b^(1/3) ( 5c - a)/(3c^2 + ac + 5a) > c^( 1/3) Áp dụng bất đẳng thức AM-GM, ta có: 3a^2 + ab + 5b ≥ 3∛(15a^2b) 3b^2 + bc + 5c ≥ 3∛(15b^2c) 3c^2 + ac + 5a ≥ 3∛(15c^2a) Khi đặt A = 3a^2 + ab + 5b, B = 3b^2 + bc + 5c, C = 3c^2 + ac + 5a, ta có: A > a ^ (1/3) B > b^(1/3) C > c^(1/3) Từ đó, ta có: (A + B + C) > (a^(1/3) + b^(1/3) + c^(1/3)) Nhưng A, B, C lần lượt tương ứng với các số mẫu trong bất đẳng thức ban đầu, ta thu được: (5a - b)/(3a^2 + ab + 5b) + (5b - c)/(3b^2 + bc + 5c) + (5c - a)/(3c^ 2 + ac + 5a) > (a^(1/3) + b^(1/3) + c^(1/3)) Tuy nhiên, điều này trái với giả định ban đầu.
Chứng minh (x+y+z)^2-x^2-y^2-z^2=2(xy+yz+zx)
2) cho xyz=2016
chứng minh rằng 2016x/xy+2016x+2016 + y/yz+y+2016 + z/xz+z+1 = 1