Cho đường tròn (O;R) có 2 đường kính AB và CD vuông góc với nhau. Từ điểm M bất kì trên cung nhỏ BC kẻ MH vuông góc với CB tại H.
1.Gọi I là tâm đường tròn nội tiếp tam giác OMH. Chứng minh \(\widehat{OIB}\) không đổi
2.Tìm vị trí của điểm M sao cho tam giác AMH có diện tích lớn nhất