x/3=y/4=z/5.Tính giá trị của biểu thức B=x+y-z/x+2y-z
cho x/3=y/4=z/5. tính giá trị biểu thức của b=x+y-z/x+2y-z
Đặt \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\left(k\ne0\right)\)\(\Rightarrow\begin{cases}x=3k\\y=4k\\z=5k\end{cases}\)
Ta có: \(b=\frac{x+y-z}{x+2y-z}=\frac{3k+4k-5k}{3k+2.4k-5k}=\frac{2k}{3k+8k-5k}=\frac{2k}{6k}=\frac{1}{3}\)
Giải:
Đặt \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)
\(\Rightarrow x=3k,y=4k,z=5k\)
Ta có:
\(B=\frac{x+y-z}{x+2y-z}=\frac{3k+4k-5k}{3k+8k-5k}=\frac{\left(3+4-5\right)k}{\left(3+8-5\right)k}=\frac{2k}{6k}=\frac{1}{3}\)
Vậy \(B=\frac{1}{3}\)
cho x/3=y/4=z/5. Tính giá trị biểu thức B=x+y-z/x+2y-z
cho \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)tính giá trị biểu thức B = \(\xrightarrow[x+2y-z]{x+y-z}\)
X/3=Y/4=Z/5 -> X=3 , Y=4 , Z=5 -> 3+4-5/3+(2.4)-5=1/4
cho biểu thức A = (x-y + z ) -(-z-y -x ) - 2y
a, rút gọn biểu thức A
b, tính giá trị của nó với x= 3. y=-1 , z=2
a) A = x - y + z + z + y + x - 2y
A = (x + x) + (-y + y) + (z + z) - 2y
A = 2x + 0 + 2z - 2y
A = 2 .(x + z - y)
b) Thay x = 3 ; y = -1 ; z = 2 vào biểu thức A , ta được :
A = 2 .[3 + 2 - (-1)]
A = 12
Vậy A = 12
Chúc bạn học tốt !
Cho:
x/3=y/4=z/5.Tính giá trị của bểu thức B=x+y+z/x+2y-z
ai nhanh mk tích+ kb
Ta có:
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{3+4+5}=\frac{x+y+z}{x+2y-z}.\left(\text{dãy tỉ số bằng nhau}\right)\)
\(\Rightarrow3+4+5=12=x+2y-z\)
\(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=\frac{x+2y-z}{3+8-5}=\frac{12}{6}=2\)
=> x/3 =2 =>x=6
=> x/4=2 => x=8
=> x/5 =2 => x=10
cho x/2 =y/5=z/7.tính giá trị biểu thức A= x-y+z/x+2y-z
Đặt \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=k\Rightarrow A=\frac{x-y+z}{x+2y-z}=\frac{2k-5k+7k}{2k+10k-7k}=\frac{k.\left(2-5+7\right)}{k.\left(2+10-7\right)}=\frac{4}{5}\)
Vậy \(A=\frac{4}{5}\)
đặt x/2=y/6=z/7=k
suy ra x-y+z/x+2-z = 2k-5k+7k/2k10+7k = k(2-5+70/k(2+10-70 = 4/5
vậy A=4/5
cho x/2=y/5=z/7 tính giá trị biểu thức A= x-y+z/x+2y-z
Đặt: \(\frac{x}{2}\)+\(\frac{y}{5}\)+\(\frac{z}{7}\)=k
=>x=2k; y=5k; z=7k
Theo bài ra ta có:
A=\(\frac{x-y+z}{x-2y-z}\)=\(\frac{2k-5k+7k}{2k+2\left(5k\right)-7k}\)=\(\frac{4k}{5k}\)=\(\frac{4}{5}\)
=>A=\(\frac{4}{5}\)
theo bài ra ta có:
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=\frac{2y}{10}\)
áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=\frac{2y}{10}=\frac{x-y+z}{2-5+7}=\frac{x+2y-z}{2+10-7}=\frac{x-y+z}{4}=\frac{x+2y-z}{5}\)
=>\(\frac{x-y+z}{4}=\frac{x+2y-z}{5}\)
theo tính chất tỉ lệ thức ta có;
\(\frac{x-y+z}{4}=\frac{x+2y-z}{5}\Rightarrow\frac{4}{5}=\frac{x-y+z}{x+2y-z}\)
vậy A = \(\frac{4}{5}\)
Cho x/2 = y/5 = z/7. Tính giá trị biểu thức A=x-y+z/x+2y-z
Giải:
Đặt \(\frac{x}{2}=\frac{y}{5}=\frac{z}{7}=k\)
\(\Rightarrow x=2k,y=5k,z=7k\)
Ta có: \(A=\frac{x-y+z}{x+2y-z}=\frac{2k-5k+7k}{2k+2\left(5k\right)-7k}=\frac{k\left(2-5+7\right)}{2k+10k-7k}=\frac{k4}{\left(2+10-7\right)k}=\frac{4}{5}\)
Vậy \(A=\frac{4}{5}\)