tìm x, y thỏa mãn: (x2 - 1)(x2 - 16) < 0 và x \(\in\)Z
cho x,y,z>0 thỏa mãn: x2+yz+z2=1-\(\dfrac{3x^2}{z}\).
Tìm GTNN và GTLN của P= x+y+z
cho x, y, z ≥ 0 thỏa mãn x + y + z =6. Tìm GTNN và GTLN của
A = x2 + y2 + z2
Bạn tham khảo lời giải tại đây:
cho \(x,y,z\ge0\) thỏa mãn \(x y z=6\). tìm GTLN và GTNN của biểu thức \(A=x^2 y^2 z^2\) - Hoc24
Các số thực a,b,c,x,y,z thỏa mãn a 2 + b 2 + c 2 - 2 a + 4 c + 4 = 0 và x 2 + y 2 + z 2 - 4 x + 4 y + 4 = 0 . Tìm GTLN của S = a - x 2 + b - y 2 + z - c 2 .
bài 1: cho các số dương x, y, z thỏa mãn x+y+z=1. Tìm min
a) A = x2+y2+z2
b) B = x2+y2+3z2
c) C=x2+2y2+3z2
d) D=x2+by2+cz2
Cho x; y; z ≠ 0 thỏa mãn x + y + z = 0. Tính giá trị biểu thức: A = x y x 2 + y 2 − z 2 + y z y 2 + z 2 − x 2 + z x z 2 + x 2 − y 2
A. A = 1 2
B. A = - 1 2
C. A = - 3 2
D. A = 3 2
Cho x; y; z ≠ 0 thỏa mãn x + y + z = 0. Chọn câu đúng về biểu thức A = x y x 2 + y 2 − z 2 + y z y 2 + z 2 − x 2 + z x z 2 + x 2 − y 2
A. A < -2
B.0 < A < 1
C. A > 0
D. A < -1
tìm tất cả các cặp số nguyên (x, y) thỏa mãn: x(x2 - y) + (y - 3)(x2 + 1) = 0
Cho các số thực x, y, z, a, b, c thỏa mãn: x+y+z=1; x2+y2+z2=1 và a/x=b/y=c/z.
Chứng minh rằng: ab + bc + ca =0
Lời giải:
Đặt $\frac{a}{x}=\frac{b}{y}=\frac{c}{z}=t$
$\Rightarrow a=xt; b=yt; c=zt$. Ta có:
$a+b+c=xt+yt+zt=t(x+y+z)=t$
$a^2+b^2+c^2=t^2(x^2+y^2+z^2)=t^2$
$ab+bc+ac=\frac{(a+b+c)^2-(a^2+b^2+c^2)}{2}=\frac{t^2-t^2}{2}=0$
Ta có đpcm.
Cho ba số x, y và z thỏa mãn x + y + z = 0. Chứng minh rằng
2(x5 + y5 + z5) = 5xyz(x2 + y2 + z2).
Lời giải:
$x^5+y^5+z^5=(x^2+y^2+z^2)(x^3+y^3+z^3)-[x^2(y^3+z^3)+y^2(x^3+z^3)+z^2(x^3+y^3)]$
Mà:
$x^3+y^3+z^3=(x+y)^3-3xy(x+y)+z^3$
$=(-z)^3-3xy(-z)+z^3=3xyz$
Và:
\(x^2(y^3+z^3)+y^2(x^3+z^3)+z^2(x^3+y^3)\)
\(=x^2y^2(x+y)+y^2z^2(y+z)+z^2x^2(z+x)=-x^2y^2z-y^2z^2x-x^2y^2z\)
\(=-xyz(xy+yz+xz)=-xyz[\frac{(x+y+z)^2-(x^2+y^2+z^2)}{2}]=\frac{xyz(x^2+y^2+z^2)}{2}\)
Do đó: \(x^5+y^5+z^5=3xyz(x^2+y^2+z^2)-\frac{xyz(x^2+y^2+z^2)}{2}=\frac{5xyz(x^2+y^2+z^2)}{2}\)
\(\Rightarrow 2(x^5+y^5+z^5)=5xyz(x^2+y^2+z^2)\)
Ta có đpcm.
Cho a, b, x, y, z là các số phức thỏa mãn: a 2 - 4 b = 16 + 2 i , x 2 + a x + b + z = 0 , y 2 + a y + b + z = 0 , x - y = 2 3 . Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của z . Tính M + m
A. M + m = 10
B. M + m = 28
C. M + m = 29
D. M + m = 6 3