A=\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}+\frac{1}{2016}\)
Tính nhanh : \(\frac{2017+\frac{1}{2016}+\frac{2}{2015}+\frac{3}{2014}+...+\frac{2015}{2}+\frac{2016}{1}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}+\frac{1}{2016}}\)
SO SÁNH:
A=\(\frac{\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+.....+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.....+\frac{1}{2016}+\frac{1}{2017}}\)
VÀ
B=2017
Mấy bài dạng này biết cách làm là oke
Ta có :
\(A=\frac{\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)
\(A=\frac{\left(2016-1-1-...-1\right)+\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{2}{2015}+1\right)+\left(\frac{1}{2016}+1\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)
\(A=\frac{\frac{2017}{2017}+\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2015}+\frac{2017}{2016}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)
\(A=\frac{2017\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}\)
\(A=2017\)
Vậy \(A=2017\)
Chúc bạn học tốt ~
\(A=\frac{\frac{2016}{1}+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)
\(A=\frac{2016+\frac{2015}{2}+...+\frac{2}{2015}+\frac{1}{2016}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)
\(A=\frac{\left(\frac{2015}{2}+1\right)+\left(\frac{2014}{3}+1\right)+...+\left(\frac{2}{2015}+1\right)+\left(\frac{1}{2016}+1\right)+\frac{2017}{2017}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)
(số 2016 tách ra làm 2016 số 1 rồi cộng vào từng phân số, còn dư 1 số viết thành 2017/2017 nghe bạn!!! :)))
\(A=\frac{\frac{2017}{2}+\frac{2017}{3}+...+\frac{2017}{2015}+\frac{2017}{2016}+\frac{2017}{2017}}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)
\(A=\frac{2017\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}+\frac{1}{2016}+\frac{1}{2017}\right)}{\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2017}}\)
\(A=2017\)
tính
A=\(\left(\frac{1}{3}+\frac{1}{4}+..+\frac{1}{2016}\right)\left(1+\frac{1}{2}+...+\frac{1}{2015}\right)\left(1+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}\right)\left(\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2015}\right)\)
A = (\(\frac{1}{1009}+\frac{1}{1010}+.....+\frac{1}{2015}+\frac{1}{2016}\)) :(\(\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2015}-\frac{1}{2016}\))
khó was chịu mk cũng lớp 7 mà chẳng thấy bài nào như vạy cả
bài này dễ mà? tớ lười quá chẳng muốn làm đâu
\(A=\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2015}+\frac{1}{2016}}{\frac{2015}{1}+\frac{2014}{2}+\frac{2013}{3}+...+\frac{1}{2014}+\frac{1}{2015}}\)
xét mẫu(chỗ 1/2014 sửa lại thành 2/2014)
=(1/2015+1)+(2/2014+1)+...+(2013/3+1)+(2014/2+1)+(2015/1-2014)
=2016/2015+2016/2014+...+2016/3+2016/2+1
=2016.(1/2016+1/2015+...+1/4+1/3+1/2)
=> A= 1/2016
mún dễ hỉu hơn hãy gửi tin nhắn cho mik
cho A=\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+.......+\frac{1}{2016}+\frac{1}{2017}\)
va B=\(\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+......+\frac{2}{2015}+\frac{1}{2016}\)
Tinh ti so \(\frac{A}{B}\)
A =\(\frac{2015+\frac{2014}{2}+\frac{2013}{3}+\frac{2012}{4}+\frac{2011}{5}+.....+\frac{1}{2015}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+......+\frac{1}{2016}}=\)
tìm A
Xét tử: \(2015+\frac{2014}{2}+\frac{2013}{3}+...+\frac{1}{2015}\)
\(=\left(1+1+...+1\right)+\frac{2014}{2}+\frac{2013}{3}+...+\frac{1}{2015}\)( trong ngoặc có 2015 số 1 )
\(=\left(1+\frac{2014}{2}\right)+\left(1+\frac{2013}{3}\right)+...+\left(1+\frac{1}{2015}\right)+1\)
\(=\frac{2016}{2}+\frac{2016}{3}+\frac{2016}{4}+...+\frac{2016}{2015}+\frac{2016}{2016}\)
\(=2016\cdot\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}\right)\)
Ghép tử và mẫu \(\frac{2016\cdot\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}\right)}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}}=2016\)
Vậy \(A=2016\)
\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}}{\frac{2016}{1}+\frac{2015}{2}+....+\frac{2}{2015}+\frac{1}{2016}}\)
rút gọn nha mọi người
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}}{\left(\dfrac{2015}{2}+1\right)+...+\left(\dfrac{2}{2015}+1\right)+\left(\dfrac{1}{2016}+1\right)+1}\)
\(=\dfrac{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{4}+...+\dfrac{1}{2016}}{\dfrac{2017}{2}+\dfrac{2017}{3}+...+\dfrac{2017}{2015}+\dfrac{2017}{2016}}=\dfrac{1}{2017}\)
Thực hiện phép tính:
\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2016}+\frac{1}{2017}}{\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+...+\frac{2}{2015}+\frac{1}{2016}}\)
Đặt \(A=\frac{2016}{1}+\frac{2015}{2}+\frac{2014}{3}+.......+\frac{2}{2015}+\frac{1}{2016}\)
\(=\frac{2015}{2}+1+\frac{2014}{3}+1+...........+\frac{1}{2015}+1\)
\(=\frac{2017}{2}+\frac{2017}{3}+.........+\frac{2017}{2015}+\frac{2017}{2016}\)
\(=2017.\left(\frac{1}{2}+\frac{1}{3}+.......+\frac{1}{2015}+\frac{1}{2016}\right)\)
Thay A vào biểu thức ta dc
\(\frac{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+......+\frac{1}{2017}}{A}\)
\(=\frac{\frac{1}{2017}}{2017}\)\(=1\)
CÓ THỂ LÀ SAI NÊN BẠ THÔNG CẢM CHO MK
Cho \(A=\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}\); \(B=\frac{1}{2016}+\frac{2}{2015}+\frac{3}{2014}+...+\frac{2015}{2}+\frac{2016}{1}\)
Tính \(\frac{A}{B}\)
Vậy \(\frac{A}{B}=\frac{1}{2017}.\)
Chúc bạn học tốt!