Những câu hỏi liên quan
H24
Xem chi tiết
NT
14 tháng 5 2022 lúc 8:06

a: BC=5cm

b: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có 

BD chung

\(\widehat{ABD}=\widehat{HBD}\)

Do đó: ΔBAD=ΔBHD

Suy ra: BA=BH

c: \(\widehat{MAH}+\widehat{BHA}=90^0\)

\(\widehat{CAH}+\widehat{BAH}=90^0\)

mà \(\widehat{BHA}=\widehat{BAH}\)

nên \(\widehat{MAH}=\widehat{CAH}\)

hay AH là tia phân giác của góc MAC

Bình luận (0)
H24
15 tháng 5 2022 lúc 8:01

mọi người giúp mình câu d với ạ ,mình sắp thi rùi ạ 

 

Bình luận (0)
H24
Xem chi tiết
H24
19 tháng 2 2020 lúc 15:07

Ai trả lời giúp mình với mình đang cần gấp

Bình luận (0)
 Khách vãng lai đã xóa
H24
19 tháng 2 2020 lúc 15:38

a) Vì tam giác ABC cân tại a (GT)
=> góc ABC = góc ACB (ĐL) hay góc EBC = góc DCB (1)
Vì BD vuông góc với AC (GT) => Góc BDC = 90 độ (ĐN) (2)
Vì CE vuông góc với AB (GT) => Góc CEB = 90 độ (ĐN) (3)
Từ (2), (3) => Góc BDC = góc CEB = 90 độ (4)
Xét tam giác BEC và tam giác CDB có :
 Góc BDC = góc CEB = 90 độ (Theo (4))
BC chung
góc EBC = góc DCB (Theo (1))
=> tam giác BEC = tam giác CDB (ch - gn) (5)
=> CE = BD (2 cạnh tương ứng)
b) Từ (5) => BE = CD (2 cạnh tương ứng) (6)
    Từ (5) => Góc BCE = góc CBD (2 góc tương ứng) (7)
Mà góc BCE + góc ACE = góc ACB
      góc CBD + góc ABD = góc ABC
      góc ACB = góc ABC (Theo (1))
Ngoặc '}' 4 điều trên
=> Góc ACE = góc ABD hay góc DCO = góc EBO (8)
Xét tam giác BEO và tam giác CDO có :
Góc BEO = góc CDO = 90 độ (Theo (4))
BE = CD (Theo (6))
Góc EBO = góc DCO (Theo (8))
=> tam giác OEB = tam giác ODC (g.c.g) (9)
c) Từ (9) => OB = OC (2 cạnh tương ứng) (10)
Vì tam giác ABC cân tại A (GT) => AB = AC (ĐN) (11)
Xét tam giác ABO và tam giác ACO có :
AO chung
OB = OC (Theo (10))
AB = AC (Theo (11))
=> tam giác ABO = tam giác ACO (c.c.c)
=> Góc BAO = góc CAO (2 góc tương ứng)
Mà AO nằm giữa BO và CO
=> AO là tia pg của góc BAC (đpcm)
d) Ta có : BE = CD (Theo (6))
Mà BE = 3cm (GT)
=> CD = 3cm (12)
Xét tam giác BCD vuông tại D có :
BD2 + CD2 = BC2 (ĐL pi-ta-go)
Mà CD = 3cm (Theo (12))
      BC = 5cm (GT)
=> BD2 + 32 = 52
=> BD2 + 9   = 25
=> BD2         = 25 - 9
=> BD2         = 16
=> BD2         = \(\sqrt{14}\)   
=> BD           = 4cm
Vậy a)... b)... c)... d)...

Bình luận (0)
 Khách vãng lai đã xóa
H24

a/ Xét t/g vuông: t/g ABD và t/g ACE có:

AB = AC (gt)

Aˆ:chungA^:chung

=> t/g ABD = t/g ACE (cạnh huyền-góc nhọn)

=> BD = CE

b/ Vì AB = AC => t/g ABC cân tại A

=> ABCˆ=ACBˆABC^=ACB^

Xét 2 t/g vuông: t/g BEC và t/g CDB có:

BD = CE (ý a)

ABCˆ=ACBˆ(cmt)ABC^=ACB^(cmt)

=> t/g BEC = t/g CDB (cạnh góc vuông - góc nhọn kề)

=> BE = CD

Xét t/g OEB và t/g ODC có:

OEBˆ=ODCˆ=90o(gt)OEB^=ODC^=90o(gt)

BE = CD (cmt)

ABDˆ=ACEˆABD^=ACE^ (2 góc tương ứng do t/g ABD = t/g ACE)

=> t/g OEB = t/g ODC (g.c.g)

c/ xét t/g AOB và t/g AOC có:

AO: cạnh chung

AB = AC (gt)

OB = OC (2 cạnh tương ứng do t/g OEB = t/g ODC)

=> t/g AOB = t/g AOC (c.c.c)

=> OABˆ=OACˆOAB^=OAC^ (2 cạnh tương ứng)

=> AO là tia p/g của góc BAC

CHÚC BẠN HỌC TỐT

Bình luận (0)
 Khách vãng lai đã xóa
NP
Xem chi tiết
NP
7 tháng 4 2020 lúc 11:38

Ai đó giúp mình với! Mình đang cần gấp!:( Các bạn vẽ hình lun giúp mình nha! Cảm ơn các bạn nhìu!:)

Bình luận (0)
 Khách vãng lai đã xóa
LQ
8 tháng 4 2020 lúc 19:41

Do tam giác ABC có

AB = 3 , AC = 4 , BC = 5

Suy ra ta được

(3*3)+(4*4)=5*5  ( định lý pi ta go) 

9 + 16 = 25

Theo định lý py ta go thì tam giác abc vuông tại A

Bình luận (0)
 Khách vãng lai đã xóa
TL
15 tháng 4 2020 lúc 7:19

a) Áp dụng định lý Pytago vào \(\Delta\)ABC có
AB2+AC2=BC2

thay AB=3cm, AC=4cm va BC=5cm, ta có:

32+42=52

=> 9+16=25 (luôn đúng)

=> đpcm

b) có D nằm trên tia đối của tia AC

=> D,A,C thằng hàng và A nằm giữa D và C

=> DA+AC=DC

=> DA+4=6

=>DA=2(cm)

áp dụng định lý Pytago vào tam giác ABD vuông tại A có:

AB2+AD2=BD2

=> 32+22=BD2

=> 9+4=BD2

=> \(BD=\sqrt{13}\)(cm)

Bình luận (0)
 Khách vãng lai đã xóa
DD
Xem chi tiết
NT
26 tháng 4 2023 lúc 9:54

a: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có

BD chung

góc ABD=góc HBD

=>ΔBAD=ΔBHD

b: ΔBAD=ΔBHD

=>DA=DH

mà DH<DC

nên DA<DC

c: Xét ΔDAK vuông tại A và ΔDHC vuông tại H có

DA=DH

AK=HC

=>ΔDAK=ΔDHC

=>góc ADK=góc HDC

=>góc HDC+góc KDC=180 độ

=>K,D,H thẳng hàng

Bình luận (0)
NT
Xem chi tiết
TN
Xem chi tiết
NT
21 tháng 3 2021 lúc 21:17

a) Xét ΔABD vuông tại A và ΔKBD vuông tại K có 

BD chung

\(\widehat{ABD}=\widehat{KBD}\)(BD là tia phân giác của \(\widehat{ABK}\))

Do đó: ΔABD=ΔKBD(Cạnh huyền-góc nhọn)

Bình luận (1)
PA
Xem chi tiết
NT
2 tháng 3 2022 lúc 20:58

1: Xét ΔBAI vuông tại A và ΔBDI vuông tại D có

BI chung

\(\widehat{ABI}=\widehat{DBI}\)

Do đó: ΔBAI=ΔBDI

Suy ra:BA=BD

2: Xét ΔAIE vuông tại A và ΔDIC vuông tại D có

IA=ID

\(\widehat{AIE}=\widehat{DIC}\)

Do đó: ΔAIE=ΔDIC

Suy ra: AE=DC
Ta có: BA+AE=BE

BD+DC=BC

mà BA=BD

và AE=DC

nên BE=BC

hay ΔBEC cân tại B

3: Xét ΔBEC có BA/AE=BD/DC

nên AD//EC

Bình luận (0)
AN
Xem chi tiết
NT
26 tháng 3 2022 lúc 7:37

a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔBAD=ΔBED

Suy ra: BA=BE và DA=DE

b: Xét ΔADF vuông tại A và ΔEDC vuông tại E có

DA=DE

\(\widehat{ADF}=\widehat{EDC}\)

Do đó: ΔADF=ΔEDC

Suy ra: AF=EC

=>BF=BC

hay ΔBFC cân tại B

Bình luận (0)
NN
Xem chi tiết
NT
3 tháng 3 2022 lúc 20:01

Bài 2: 

a:

BC=20cm

Xét ΔABC có AD là phân giác

nên BD/AB=CD/AC

=>BD/12=CD/16

=>BD/3=CD/4

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{BD}{3}=\dfrac{CD}{4}=\dfrac{BD+CD}{3+4}=\dfrac{20}{7}\)

Do đó: BD=60/7(cm); CD=80/7(cm)

b: Xét ΔABC có DE//AB

nên DE/AB=CD/BC

=>DE/12=4/7

hay DE=48/7(cm)

Bình luận (0)