Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6


Những câu hỏi liên quan
QL
Xem chi tiết
HM
23 tháng 9 2023 lúc 23:42

a) \(\sqrt {2 - x}  + 2x = 3\)\( \Leftrightarrow \sqrt {2 - x}  = 3 - 2x\)  (1)

Ta có: \(3 - 2x \ge 0 \Leftrightarrow x \le \frac{3}{2}\)

Bình phương hai vế của (1) ta được:

\(\begin{array}{l}2 - x = {\left( {3 - 2x} \right)^2}\\ \Rightarrow 2 - x = 9 - 12x + 4{x^2}\\ \Leftrightarrow 4{x^2} - 11x + 7 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 1\left( {TM} \right)\\x = \frac{7}{4}\left( {KTM} \right)\end{array} \right.\end{array}\)

Vậy tập nghiệm của phương trình là \(S = \left\{ 1 \right\}\)

b) \(\sqrt { - {x^2} + 7x - 6}  + x = 4\)\( \Leftrightarrow \sqrt { - {x^2} + 7x - 6}  = 4 - x\)  (2)

Ta có: \(4 - x \ge 0 \Leftrightarrow x \le 4\)

Bình phương hai vế của (2) ta được:

\(\begin{array}{l} - {x^2} + 7x - 6 = {\left( {4 - x} \right)^2}\\ \Leftrightarrow  - {x^2} + 7x - 6 = 16 - 8x + {x^2}\\ \Leftrightarrow 2{x^2} - 15x + 22 = 0\\ \Leftrightarrow \left[ \begin{array}{l}x = 2\left( {TM} \right)\\x = \frac{{11}}{2}\left( {KTM} \right)\end{array} \right.\end{array}\)

Vậy tập nghiệm của phương trình là \(S = \left\{ 2 \right\}\)

Bình luận (0)
LP
Xem chi tiết
IR
10 tháng 9 2023 lúc 14:26

a) \(x^3-4x^2-5x+6=\sqrt[3]{7x^2+9x-4}\)

\(\Leftrightarrow-7x^2-9x+4+x^3+3x^2+4x+2=\sqrt[3]{7x^2+9x-4}\)

\(\Leftrightarrow-\left(7x^2+9x-4\right)+\left(x+1\right)^3+x+1=\sqrt[3]{7x^2+9x-4}\) (*)

Đặt \(\sqrt[3]{7x^2+9x-4}=a;x+1=b\)

Khi đó (*) \(\Leftrightarrow-a^3+b^3+b=a\)

\(\Leftrightarrow\left(b-a\right).\left(b^2+ab+a^2+1\right)=0\)

\(\Leftrightarrow b=a\)

Hay \(x+1=\sqrt[3]{7x^2+9x-4}\)

\(\Leftrightarrow\left(x+1\right)^3=7x^2+9x-4\)

\(\Leftrightarrow x^3-4x^2-6x+5=0\)

\(\Leftrightarrow x^3-4x^2-5x-x+5=0\)

\(\Leftrightarrow\left(x-5\right)\left(x^2+x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{-1\pm\sqrt{5}}{2}\end{matrix}\right.\)

Bình luận (0)
QL
Xem chi tiết
HM
26 tháng 9 2023 lúc 23:26

a) \(\sqrt {{x^2} - 7x}  = \sqrt { - 9{x^2} - 8x + 3} \)

\(\begin{array}{l} \Rightarrow {x^2} - 7x =  - 9{x^2} - 8x + 3\\ \Rightarrow 10{x^2} + x - 3 = 0\end{array}\)

\( \Rightarrow x =  - \frac{3}{5}\) và \(x = \frac{1}{2}\)

Thay hai nghiệm vừa tìm được vào phương trình \(\sqrt {{x^2} - 7x}  = \sqrt { - 9{x^2} - 8x + 3} \) thì ta thấy chỉ có nghiệm \(x =  - \frac{3}{5}\) thỏa mãn phương trình

Vậy nghiệm của phương trình là \(x =  - \frac{3}{5}\)

b) \(\sqrt {{x^2} + x + 8}  - \sqrt {{x^2} + 4x + 1}  = 0\)

\(\begin{array}{l} \Rightarrow \sqrt {{x^2} + x + 8}  = \sqrt {{x^2} + 4x + 1} \\ \Rightarrow {x^2} + x + 8 = {x^2} + 4x + 1\\ \Rightarrow 3x = 7\\ \Rightarrow x = \frac{7}{3}\end{array}\)

Thay \(x = \frac{7}{3}\) vào phương trình \(\sqrt {{x^2} + x + 8}  - \sqrt {{x^2} + 4x + 1}  = 0\) ta thấy thỏa mãn phương trình

Vậy nghiệm của phương trình đã cho là \(x = \frac{7}{3}\)

c) \(\sqrt {4{x^2} + x - 1}  = x + 1\)

\(\begin{array}{l} \Rightarrow 4{x^2} + x - 1 = {\left( {x + 1} \right)^2}\\ \Rightarrow 4{x^2} + x - 1 = {x^2} + 2x + 1\\ \Rightarrow 3{x^2} - x - 2 = 0\end{array}\)

\( \Rightarrow x =  - \frac{2}{3}\) và \(x = 1\)

Thay hai nghiệm trên vào phương trình \(\sqrt {4{x^2} + x - 1}  = x + 1\) ta thấy cả hai nghiệm đều thỏa mãn

Vậy nghiệm của phương trình trên là \(x =  - \frac{2}{3}\) và \(x = 1\)

d) \(\sqrt {2{x^2} - 10x - 29}  = \sqrt {x - 8} \)

\(\begin{array}{l} \Rightarrow 2{x^2} - 10x - 29 = x - 8\\ \Rightarrow 2{x^2} - 11x - 21 = 0\end{array}\)

\( \Rightarrow x =  - \frac{3}{2}\) và \(x = 7\)

Thay hai nghiệm \(x =  - \frac{3}{2}\) và \(x = 7\) vào phương trình  \(\sqrt {2{x^2} - 10x - 29}  = \sqrt {x - 8} \) ta thấy cả hai đều không thảo mãn phương trình

Vậy phương trình \(\sqrt {2{x^2} - 10x - 29}  = \sqrt {x - 8} \) vô nghiệm

Bình luận (0)
TN
Xem chi tiết
H24
19 tháng 5 2018 lúc 20:15

Đặt:

\(a=\sqrt[3]{x^2-x-8};b=\sqrt[3]{x^2-8x-1}\)

Để ý thấy rằng: \(a^3-b^3=7x-7=\left(7x+1\right)+8\)nên PT trở thành:

\(b-a+\sqrt[3]{a^3-b^3+8}=2\)

\(\Leftrightarrow a^3-b^3+8=\left(2+a-b\right)^3\)

\(\Leftrightarrow\left(a-b\right)\left(a^2+b^2+ab\right)=\left(a-b\right)^3+6\left(a-b\right)\left[2+\left(a-b\right)\right]\)

\(\Leftrightarrow\orbr{\begin{cases}a-b=0\\\left(a-b\right)^2+3ab=\left(a-b\right)^2+12+6\left(a-b\right)\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}a=b\\\left(a+2\right)\left(2-b\right)=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\a=-2\\b=2\end{cases}}\)

\(\left(+\right)a=b\Leftrightarrow x^2-x-8=x^2-8x-1\Leftrightarrow x=1\)

\(\left(+\right)a=-2\Leftrightarrow x^2-x-8=-8\Leftrightarrow\orbr{\begin{cases}a=0\\x=1\end{cases}}\)

\(\left(+\right)b=2\Leftrightarrow x^2-8x-1=8\Leftrightarrow\orbr{\begin{cases}x=8\\x=-1\end{cases}}\)

\(\Rightarrow x\in\left\{\pm1;0;9\right\}\)

Bình luận (0)
H24
Xem chi tiết
ZZ
3 tháng 9 2020 lúc 9:00

\(ĐK:x\ge-\frac{3}{2}\)

Ta có:

\(x^2+5x+8=3\sqrt{2x^3+5x^2+7x+6}\)

\(\Leftrightarrow\left(x^2+x+2\right)+2\left(2x+3\right)=3\sqrt{2x^3+5x^2+7x+6}\)

\(\Leftrightarrow\left(x^2+x+2\right)+2\left(2x+3\right)=3\sqrt{\left(x^2+x+2\right)\left(2x+3\right)}\)

Đặt \(\sqrt{x^2+x+2}=a;\sqrt{2x+3}=b\)

Khi đó: \(a^2+2b^2=3ab\Leftrightarrow\left(a-b\right)\left(a-2b\right)=0\)

\(\Leftrightarrow\sqrt{x^2+x+2}=\sqrt{2x+3}\left(hoac\right)\sqrt{x^2+x+2}=2\sqrt{2x+3}\)

Với \(\sqrt{x^2+x+2}=\sqrt{2x+3}\Rightarrow x^2+x+2=2x+3\Leftrightarrow x^2-x-1=0\Leftrightarrow x=\frac{1+\sqrt{5}}{2};x=\frac{1-\sqrt{5}}{2}\)Tự đối chiếu điều kiện xác định -,-

\(\sqrt{x^2+x+2}=2\sqrt{2x+3}\Rightarrow x^2+x+2=4\left(2x+3\right)\Leftrightarrow x^2-7x-10=0\)

Tới đây bí rồi huhu

Bình luận (0)
 Khách vãng lai đã xóa
PT
25 tháng 1 2018 lúc 19:30

bình phương hai vế rồi rút gọn, phân tích thành nhân tử

\(\left(x+1\right)\left(x^3-9x^2+7x+10\right)=0\)0

Bình luận (0)
MT
Xem chi tiết
PP
Xem chi tiết
NK
Xem chi tiết
TN
23 tháng 8 2017 lúc 20:48

\(\sqrt[3]{7x-8}+5\sqrt{x-1}=x\sqrt{2x-1}-2\)

\(\Leftrightarrow\sqrt[3]{7x-8}-3+5\sqrt{x-1}-10=x\sqrt{2x-1}-15\)

\(\Leftrightarrow\frac{7x-8-27}{\sqrt[3]{7x-8}^2+3\sqrt[3]{7x-8}+9}+5\frac{x-1-4}{\sqrt{x-1}-2}-\frac{x^2\left(2x-1\right)-225}{x\sqrt{2x-1}+15}=0\)

\(\Leftrightarrow\frac{7\left(x-5\right)}{\sqrt[3]{7x-8}^2+3\sqrt[3]{7x-8}+9}+5\frac{x-5}{\sqrt{x-1}-2}-\frac{\left(x-5\right)\left(2x^2+9x+45\right)}{x\sqrt{2x-1}+15}=0\)

\(\Leftrightarrow\left(x-5\right)\left(\frac{7}{\sqrt[3]{7x-8}^2+3\sqrt[3]{7x-8}+9}+\frac{5}{\sqrt{x-1}-2}-\frac{2x^2+9x+45}{x\sqrt{2x-1}+15}\right)=0\)

Suy ra x=5

Bình luận (0)
NK
23 tháng 8 2017 lúc 21:22

Bài này có 2 nghiệm là x = 1 và x = 5 nhưng không biết giải thế nào. 

Bình luận (0)
NK
24 tháng 8 2017 lúc 17:23

\(\sqrt[3]{7x-8}+5\sqrt{x-1}=x\sqrt{2x-1}-2\)\(\Leftrightarrow\left[\sqrt[3]{7x-8}-\left(x-2\right)\right]+5\left(\sqrt{x-1}-\frac{x-1}{2}\right)+x\left(\frac{x+1}{2}-\sqrt{2x-1}\right)\)\(+\left(x-2\right)-\frac{x\left(x+1\right)}{2}+\frac{5}{2}\left(x-1\right)+2\)

\(\Leftrightarrow2\left[\sqrt[3]{7x-8}-\left(x-2\right)\right]+x\left(x+1-2\sqrt{2x-1}\right)+\)\(5\left[2\sqrt{x-1}-\left(x-1\right)\right]-x^2+6x-5=0\)

\(\Leftrightarrow2\left[\left(x-2\right)-\sqrt[3]{7x-8}\right]+x\left[2\sqrt{2x-1}-\left(x-1\right)\right]+\)\(5\sqrt{x-1}\left(\sqrt{x-1}-2\right)+x^2-6x+5=0\)

\(\Leftrightarrow\left(x-5\right)\sqrt{x-1}\left[\frac{2x\sqrt{x-1}}{A}+\frac{-x\sqrt{x-1}}{2\sqrt{2x-1}+x+1}+\frac{5}{\sqrt{x-1}+2}+\sqrt{x-1}\right]=0\)

\(\Leftrightarrow\left(x-5\right)\sqrt{x-1}=0\Leftrightarrow\orbr{\begin{cases}x=5\\x=1\end{cases}}\).

Bình luận (0)
HL
Xem chi tiết