\frac{ 2-x }{ 2013 } -1= \frac{ 1-x }{ 2014 } - \frac{ ^ { x } }{ 2015 }
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Tìm x biết
\(\left(\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2014}+\frac{1}{2015}\right).x=\frac{2014}{1}+\frac{2013}{2}+\frac{2012}{3}+...+\frac{2}{2013}+\frac{1}{2014}\)
có 2014/1+2013/2+2012/3+...+2/2013+1/2014=[1+(2013/2)]+[1+(2012/3)]+...+[1+(2/2013)]+[1+(1/2014)]+1
=2015/2+2015/3+...+2015/2014+2015/2015=2015.[1/2+1/3+..+1/2015)
vậy (1/2+1/3+...+1/2015).x=(1/2+1/3+...+1/2015).2015
x=2015
bài 1)trung bình cộng các giá trị x thỏa mãn 4(x-1)^2=x^2
bài 2)\(\frac{2014+\frac{2013}{2}+\frac{2012}{3}+.............+\frac{2}{2013}+\frac{1}{2014}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+..............+\frac{1}{2014}+\frac{1}{2015}}\)
2) xét tử ta có
2014+2013/2+2012/3+...+2/2013+1/2014
=(1+2013/2)+(1+2012/3)+...+(1+2/2013)+(1+1/2014)+1
=2015/2+2015/3+...+2015/2013+2015/2014+2015/2015
=2015(1/2+1/3+...+1/2013+1/2014+1/2015) (1)
mà mẫu bằng 1/2+1/3+1/4+...+1/2014+1/2015 (2)
từ (1),(2)=> phân thức trên =2015
Giải phương trình:
\(\frac{\sqrt{x-2013}-1}{x-2013}+\frac{\sqrt{y-2014}-1}{y-2014}+\frac{\sqrt{z-2015}-1}{z-2015}=\frac{3}{4}\)
Đặt \(\sqrt{x-2013}=a\left(a>0\right)\)
\(\sqrt{y-2014}=b\left(b>0\right)\)
\(\sqrt{z-2015}=c\left(c>0\right)\)
Có \(\frac{a-1}{a^2}+\frac{b-1}{b^2}+\frac{c-1}{c^2}=\frac{3}{4}\)
<=> \(\frac{a-1}{a^2}-\frac{1}{4}+\frac{b-1}{b^2}-\frac{1}{4}+\frac{c-1}{c^2}-\frac{1}{4}=0\)
<=> \(\frac{4a-4-a^2}{4.a^2}+\frac{4b-4-b^2}{4b^2}+\frac{4c-4+c^2}{4c^2}=0\)
<=>\(\frac{-\left(a^2-4a+4\right)}{4a^2}-\frac{b^2-4b+4}{4b^2}-\frac{c^2-4c+4}{4c^2}=0\)
<=> \(\frac{\left(a-2\right)^2}{4a^2}+\frac{\left(b-2\right)^2}{4b^2}+\frac{\left(c-2\right)^2}{4c^2}=0\).
Có \(\frac{\left(a-2\right)^2}{4a^2}\ge0\forall a>0\)
\(\frac{\left(b-2\right)^2}{4b^2}\ge0\forall b>0\)
\(\frac{\left(c-2\right)^2}{4c^2}\ge0\forall c>0\)
=> \(\frac{\left(a-2\right)^2}{4a^2}+\frac{\left(b-2\right)^2}{4b^2}+\frac{\left(c-2\right)^2}{4c^2}\ge0\) với moi a,b,c >0
Dấu "=" xảy ra <=> \(\left\{{}\begin{matrix}a-2=0\\b-2=0\\c-2=0\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}a=2\\b=2\\c=2\end{matrix}\right.\)<=> \(\left\{{}\begin{matrix}\sqrt{x-2013}=2\\\sqrt{y-2014}=2\\\sqrt{z-2015}=2\end{matrix}\right.\)
<=> \(\left\{{}\begin{matrix}x-2013=4\\y-2014=4\\z-2015=4\end{matrix}\right.\) <=>\(\left\{{}\begin{matrix}x=2017\\y=2018\\z=2019\end{matrix}\right.\)(t/m)
Vậy \(\left(x,y,z\right)\in\left\{\left(2017,2018,2019\right)\right\}\)
\(\frac{x+1}{2015}+\frac{x+2}{2014}=\frac{x+2}{2013}+\frac{x+4}{2012}\)
Tìm x, biết:
\(\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2013}\right).x+2013=\frac{2014}{1}+\frac{2015}{2}+...+\frac{4025}{2012}+\frac{4026}{2013}\)
tìm x ( x>0)
\(\frac{2015}{2014}+\frac{1}{x}=\frac{1}{x+1}+\frac{2014}{2013}\)
<=> 1+\(\frac{1}{2014}\)+\(\frac{1}{x}\)=\(\frac{1}{x+1}\)+1+\(\frac{1}{2013}\)
<=> \(\frac{1}{2014}\)+\(\frac{1}{x}\)=\(\frac{1}{x+1}\)+\(\frac{1}{2013}\)
<=> \(\frac{1}{x}\)-\(\frac{1}{x+1}\)=\(\frac{1}{2013}\)-\(\frac{1}{2013+1}\) => x=2013
\(\frac{2015}{2014}+\frac{1}{x}=\frac{1}{x+1}+\frac{2014}{2013}\)
\(\Leftrightarrow\frac{2015}{2014}-1+\frac{1}{x}=\frac{1}{x+1}+\frac{2014}{2013}-1\)
\(\Leftrightarrow\frac{1}{2014}+\frac{1}{x}=\frac{1}{x+1}+\frac{1}{2013}\)
\(\Leftrightarrow\frac{x+2014}{2014x}=\frac{x+2014}{2013\left(x+1\right)}\)
\(\Leftrightarrow2014x=2013x+2013\)
\(\Leftrightarrow x=2013\)
Tìm x, biết:
\(\left(1+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{2013}\right).x+2013=\frac{2014}{1}+\frac{2015}{2}+...+\frac{4025}{2012}+\frac{4026}{2013}\)
\(\frac{x}{2012}+\frac{x-1}{2013}+\frac{x-2}{2014}-\frac{x-3}{2015}=\frac{x-4}{1008}\)
\(\frac{x}{2012}+\frac{x-1}{2013}+\frac{x-2}{2014}-\frac{x-3}{2015}=\frac{x-4}{1008}\)
\(\Leftrightarrow\left(\frac{x}{2012}+1\right)+\left(\frac{x-1}{2013}+1\right)+\left(\frac{x-2}{2014}+1\right)-\left(\frac{x-3}{2015}+1\right)=\frac{x-4}{1008}+2\)
\(\Leftrightarrow\frac{x+2012}{2012}+\frac{x+2012}{2013}+\frac{x+2012}{2014}-\frac{x+2012}{2015}=\frac{x-4+1008.2}{1008}\)
\(\Leftrightarrow\frac{x+2012}{2012}+\frac{x+2012}{2013}+\frac{x+2012}{2014}-\frac{x+2012}{2015}=\frac{x+2012}{1008}\)
\(\Leftrightarrow\frac{x+2012}{2012}+\frac{x+2012}{2013}+\frac{x+2012}{2014}-\frac{x+2012}{2015}-\frac{x+2012}{1008}=0\)
\(\Leftrightarrow\left(x+2012\right)\left(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}-\frac{1}{1008}\right)=0\)
Vì \(\frac{1}{2012}+\frac{1}{2013}+\frac{1}{2014}-\frac{1}{2015}-\frac{1}{1008}\ne0\)
\(\Rightarrow x+2012=0\)\(\Leftrightarrow x=-2012\)
Vậy \(x=-2012\)
Chu Công Đứcbạn làm kết quả đúng nhưng trình bày sai rồi vế phải bạn cộng 2 nhưng vế trái bạn cộng 4???
Nhưng nếu vế phải +2 thì kết quả có thay đổi ko vậy ạ
\(\frac{x-1}{2015}+\frac{x-2}{2014}-\frac{x-3}{2013}-\frac{x-4}{2012}=0\)
=\(\left(\frac{x-1}{2015}-1\right)+\left(\frac{x-2}{2014}-1\right)-\left(\frac{x-3}{2013}-1\right)-\left(\frac{x-4}{2012}-1\right)\)
=\(\frac{x-2016}{2015}+\frac{x-2016}{2014}-\frac{x-2106}{2013}-\frac{x-2016}{2012}\)
=\(\left(x-2016\right).\left(\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}\right)\)
Mà: \(\frac{1}{2012}>\frac{1}{2015}\) và \(\frac{1}{2014}< \frac{1}{2013}\)
=>\(\frac{1}{2015}+\frac{1}{2014}-\frac{1}{2013}-\frac{1}{2012}\) khác \(0\)
Nên: \(x-2016=0\)
=>\(x=2016\)