Áp dụng tính tổng: \(S=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{23+24+25}\)
Tính nhanh tổng sau: \(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{10.11.12}\)
\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{10.11.12}\)
\(=\dfrac{1}{2}.\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{10.11.12}\right)\)
\(=\dfrac{1}{2}.\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{10.11}-\dfrac{1}{11.12}\right)\)
\(=\dfrac{1}{2}.\left(\dfrac{1}{1.2}-\dfrac{1}{11.12}\right)\)
\(=\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{132}\right)\)
\(=\dfrac{1}{2}.\dfrac{65}{132}=\dfrac{65}{264}\)
(\(\dfrac{1}{1.2.3}\)+\(\dfrac{1}{2.3.4}\)+...+\(\dfrac{1}{8.9.10}\)).x=\(\dfrac{23}{45}\)
Lời giải:
Gọi tổng trong ngoặc là $A$
$2A=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+....+\frac{10-8}{8.9.10}$
$=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{8.9}-\frac{1}{9.10}$
$=\frac{1}{1.2}-\frac{1}{9.10}=\frac{1}{2}-\frac{1}{90}=\frac{22}{45}$
Vậy $\frac{22}{45}x=\frac{23}{45}$
$\Rightarrow x=\frac{23}{45}: \frac{22}{45}=\frac{23}{22}$
Tính A=\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{37.38.39}\)
\(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{37.38.39}\)
\(A=\dfrac{1}{2}\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{37.38.39}\right)\)
\(A=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{37.38}-\dfrac{1}{38.39}\right)\)
\(A=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{38.39}\right)\)
\(A=\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{1482}\right)\)
\(A=\dfrac{1}{2}.\dfrac{370}{741}=\dfrac{185}{741}\)
\(S=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{98.99.100}\)
Ta có :
\(S=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+..............+\dfrac{1}{98.99.100}\)
\(S=\dfrac{1}{2}\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+................+\dfrac{2}{98.99.100}\right)\)
\(S=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...........+\dfrac{1}{98.99}-\dfrac{1}{99.100}\right)\)
\(S=\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{99.100}\right)\)
\(S=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{9900}\right)\)
\(S=\dfrac{1}{2}.\dfrac{4949}{9900}\)
\(S=\dfrac{4949}{19800}\)
~ Chúc bn học tốt ~
Tính hợp lý:
\(C=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{98.99.100}\)
\(2C=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+\dfrac{2}{98.99.100}\)
\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{98.99}-\dfrac{1}{99.100}\)
\(=\dfrac{1}{1.2}-\dfrac{1}{99.100}=\dfrac{50.99-1}{100.99}=\dfrac{4949}{9900}\)
`A=1/[1.2.3]+1/[2.3.4]+....+1/[98.99.100]`
`A=1/2.(2/[1.2.3]+2/[2.3.4]+....+2/[98.99.100])`
`A=1/2.(1/[1.2]-1/[2.3]+1/[2.3]-1/[3.4]+....+1/[98.99]-1/[99.100])`
`A=1/2.(1/[1.2]-1/[99.100])`
`A=1/2.(1/2-1/9900)`
`A=1/2.(4950/9900-1/9900)`
`A=1/2 . 4949/9900`
`A=4949/19800`
\(C=\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{98.99.100}\)
\(C=\frac{1}{2}.\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{98.99.100}\right)\)
\(C=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+...+\frac{1}{98.99}-\frac{1}{99.100}\right)\)
\(C=\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{9900}\right)\)
\(C=\dfrac{1}{2}.\dfrac{4949}{9900}=\dfrac{4949}{19800}\)
BT3: Tìm x, biết
19) \(\left(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{8.9.10}\right).x=\dfrac{23}{45}\)
\(\left(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{8.9.10}\right).x=\dfrac{23}{45}\)
\(\left[\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{8.9}-\dfrac{1}{9.10}\right)\right].x=\dfrac{23}{45}\)\(\left[\dfrac{1}{2}.\left(\dfrac{1}{1.2}-\dfrac{1}{9.10}\right)\right].x=\dfrac{23}{45}\)
\(\left(\dfrac{1}{2}.\dfrac{22}{45}\right).x=\dfrac{23}{45}\)
\(\dfrac{11}{45}.x=\dfrac{23}{45}\)
\(x=\dfrac{23}{45}:\dfrac{11}{45}\)
\(x=\dfrac{23}{11}\)
Tìm số tự nhiên x biết :
\(\left(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{8.9.10}\right).x=\dfrac{23}{45}\)
Ta có:
\(\left(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{8.9.10}\right)x=\dfrac{23}{45}\)
\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{8.9.10}\right)x\) \(=\dfrac{23}{45}\)
\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+...+\dfrac{1}{8.9}-\dfrac{1}{9.10}\right)x\) \(=\dfrac{23}{45}\)
\(\Leftrightarrow\dfrac{1}{2}\left(\dfrac{1}{1.2}-\dfrac{1}{9.10}\right)x=\dfrac{23}{45}\)
\(\Leftrightarrow\dfrac{11}{45}.x=\dfrac{23}{45}\Leftrightarrow x=\dfrac{23}{45}\div\dfrac{11}{45}=\dfrac{23}{11}\)
Vậy \(x=\dfrac{23}{11}\)
Tính nhanh:
\(S=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{8.9.10}\)
\(S=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{8.9.10}\)
\(S=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{8.9}-\dfrac{1}{9.10}\)
\(S=\dfrac{1}{1.2}-\dfrac{1}{9.10}\)
\(S=\dfrac{1}{2}-\dfrac{1}{90}=\dfrac{44}{90}\)
Tìm y:
-y:\(\dfrac{1}{2}\)-\(\dfrac{5}{2}\)=4\(\dfrac{1}{2}\)
Tính:
N = \(\dfrac{3}{4}\).\(\dfrac{8}{9}\).\(\dfrac{15}{16}\)....\(\dfrac{899}{900}\).\(\dfrac{960}{961}\)
S=\(\dfrac{1}{1.2.3}\)+\(\dfrac{1}{2.3.4}\)+\(\dfrac{1}{3.4.5}\)+...+\(\dfrac{1}{10.11.12}\)+\(\dfrac{1}{11.12.13}\)
Tìm y:
-y:1/2-5/2=4+1/2
-y:1/2 = 4+1/2+5/2
-y:1/2 = 7
-y = 7.2
y = -14
Vậy y = -14